Advertisement
Research Article| Volume 20, ISSUE 3, P489-502, September 2000

Biochemical Markers of Bone Formation

  • Caren M. Gundberg
    Correspondence
    Address reprint requests to Caren M. Gundberg, PhD, Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510.
    Affiliations
    From the Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
    Search for articles by this author
      This paper is only available as a PDF. To read, Please Download here.
      The biochemical markers of bone formation are comprised of products of osteoblastic synthesis. These include N- and C-propeptides of type I collagen, osteocalcin, and bone-specific alkaline phosphatase. This article reviews the biochemistry and physiology of these markers. The various methods currently available for their determination are evaluated. Finally, the clinical use of these markers in the management of osteoporosis is discussed.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Akesson K.
        • Ljunghall S.
        • Jonsson B.
        • et al.
        Assessment of biochemical markers of bone metabolism in relation to the occurrence of fracture: A retrospective and prospective population-based study in women.
        J Bone Miner Res. 1995; 10: 1823
        • Bauer D.C.
        • Sklarin P.M.
        • Stone K.L.
        • et al.
        Biochemical markers of bone turnover and prediction of hip bone loss in older women: The Study of Osteoporotic Fractures.
        J Bone Miner Res. 1999; 14: 1404
        • Brandt J.
        • Krough T.N.
        • Jensen C.
        • et al.
        Thermal instability of the trimeric structure of N-terminal propeptide of human procollagen-type I in relation to assay technology.
        Clin Chem. 1999; 45: 47
        • Calvo M.S.
        • Eyre D.
        • Gundberg C.M.
        Molecular basis and clinical application of biological markers of bone turnover.
        Endocr Rev. 1996; 17: 333
        • Charles P.
        • Mosekilde L.
        • Risteli J.
        • et al.
        Assessment of bone remodeling using biochemical indicators of type I collagen synthesis and degradation: Relation to calcium kinetics.
        Bone Miner. 1994; 24: 81
        • Chen J.
        • Hosoda K.
        • Hasumi K.
        • et al.
        Serum N-terminal osteocalcin is a good indicator for estimating responders to hormone replacement therapy in postmenopausal women.
        J Bone Miner Res. 1996; 11: 1784
        • Christiansen C.
        • Riis B.J.
        • Rodboro P.
        Prediction of rapid bone loss in postmenopausal women.
        Lancet. 1987; 1: 1105
        • Christiansen C.
        • Riis B.J.
        • Rodbro P.
        Screening procedure for women at risk of developing postmenopausal osteoporosis.
        Osteoporos Int. 1990; 1: 35
        • Colford J.W.
        • Lueddecke B.A.
        • Salvati M.
        • et al.
        Immunoradiometric assay for intact human osteocalcin(l-49) without cross-reactivity to breakdown products.
        Clin Chem. 1999; 45: 526
        • Crofton P.M.
        Biochemistry of alkaline phosphatase isoenzymes.
        Crit Rev Clin Lab Sci. 1982; 16: 161
        • Delmas P.D.
        Biochemical markers of bone turnover for the clinical assessment of metabolic bone disease.
        Endocrinol Metab Clin North Am. 1990; 19: 1
        • Dresner-Pollak R.
        • Seibel M.J.
        • Greenspan S.
        • et al.
        Biochemical markers of bone turnover reflect femoral bone loss in elderly women.
        Calcif Tissue Int. 1996; 59: 328
        • Dumon J.
        • Wantier C.
        • Mathieu H.
        • et al.
        Technical and clinical validation of a new immunoradiometric assay for human osteocalcin.
        Eur J Endocrinol. 1996; 135: 231
        • Ebeling P.R.
        • Atley L.M.
        • Guthrie J.R.
        • et al.
        Bone turnover markers and bone density across the menopausal transition.
        J Clin Endocrinol Metab. 1996; 81: 3366
        • Ebeling P.R.
        • Peterson J.M.
        • Riggs B.L.
        Utility of type I procollagen propeptide assays for assessing abnormalities in metabolic bone diseases.
        J Bone Miner Res. 1992; 7: 1243
        • Fedde K.N.
        • Blair L.
        • Silverstein J.
        • et al.
        Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia.
        J Bone Miner Res. 1999; 14: 2015
        • Garnero P.
        • Darte C.
        • Delmas P.D.
        A model to monitor the efficacy of alendronate treatment in women with osteoporosis using a biochemical marker of bone turnover.
        Bone. 1999; 24: 603
        • Garnero P.
        • Delmas P.D.
        Assessment of the serum levels of bone alkaline phosphatase with a new immunoradiometric assay in patients with metabolic bone disease.
        J Clin Endocrinol Metab. 1993; 77: 1046
        • Garnero P.
        • Grimaux M.
        • Demiaux B.
        • et al.
        Measurement of serum osteocalcin with a human-specific two-site immunoradiometric assay.
        J Bone Miner Res. 1992; 7: 1389
        • Garnero P.
        • Grimaux M.
        • Seguin P.
        • et al.
        Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro.
        J Bone Miner Res. 1994; 9: 255
        • Garnero P.
        • Hausherr E.
        • Chapuy M.C.
        • et al.
        Markers of bone resorption predict hip fractures in elderly women.
        The EPIDOS study J Bone Miner Res. 1996; 11: 1531
        • Garnero P.
        • Sornay-Rendu E.
        • Chapuy M.-C.
        • et al.
        Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis.
        J Bone Miner Res. 1996; 11: 337
        • Garnero P.
        • Sornay-Rendu E.
        • Duboeuf F.
        • et al.
        Markers of bone turnover predict postmenopausal forearm bone loss over 4 years.
        The OFELY study J Bone Miner Res. 1999; 14: 1614
        • Gomez Jr, B.
        • Ardakani S.
        • Ju J.
        • et al.
        Monoclonal antibody assay for measuring bone-specific alkaline phosphatase activity in serum.
        Clin Chem. 1995; 41: 1560
        • Greenspan S.L.
        • Parker R.A.
        • Ferguson L.
        • et al.
        Early changes in biochemical markers of bone turnover predict the long-term response to alendronate therapy in representative elderly women: A randomized clinical trial.
        J Bone Miner Res. 1998; 13: 1431
        • Gundberg C.M.
        Biology, physiology, and clinical chemistry of osteocalcin.
        J Clin Ligand Assay. 1998; 21: 128
        • Gundberg C.M.
        • Nishimoto S.K.
        Vitamin K dependent proteins of bone and cartilage.
        in: Seibel M. Robins S. Bilezikian J. Dynamics of Bone and Cartilage Metabolism: Principles and Clinical Applications. Academic Press, San Diego1999: 43
        • Gundberg C.
        • Weinstein R.S.
        Multiple immunoreactive forms of osteocalcin in uremic serum.
        J Clin Invest. 1986; 77: 1762
        • Hannon R.
        • Blumsohn A.
        • Naylor K.
        • et al.
        Response of biochemical markers of bone turnover to hormone replacement therapy: Impact of biological variability.
        J Bone Miner Res. 1998; 13: 1124
        • Hauschka P.V.
        • Lian J.
        • Cole D.E.
        • et al.
        Osteocalcin and matrix Gla protein: Vitamin K-dependent proteins in bone.
        Physiol Rev. 1989; 69: 990
        • Hosking D.
        • Chilvers C.E.D.
        • Christiansen C.
        • et al.
        Prevention of bone loss with alendronate in postmenopausal women under the 60 years of age.
        N Engl J Med. 1998; 338: 485
        • Hutchinson T.A.
        • Polansky S.M.
        • Feinstein A.R.
        Postmenopausal estrogens protect against fractures of hip and distal radius.
        Lancet. 1979; 2: 706
        • Jensen F.T.
        • Olesen H.P.
        • Risteli J.
        • et al.
        External thoracic duct-venous shunt in conscious pigs for long-term studies of connective tissue metabolites in lymph.
        Lab Anim Sci. 1990; 40: 620
        • Jensen J.E.B.
        • Kollerup G.
        • Sorensen H.A.
        • et al.
        Intraindividual variability in bone markers in the urine.
        Scand J Clin Lab Invest. 1997; 57: 29
        • Kessler E.
        • Takahara K.
        • Biniaminov L.
        Bone morphogenic protein-1: The type of procollagen C-proteinase.
        Science. 1966; 271: 360
        • Kivirikko K.I.
        • Myllyla R.
        Biosynthesis of the collagens.
        in: Piez K.A. Reddi A.H. Extracellular Matrix Biochemistry. Elsevier, New York1980: 83
        • Krall E.A.
        • Dawson-Hughes B.
        • Hirst K.
        • et al.
        Bone mineral density and biochemical markers of bone turnover in healthy elderly men and women.
        J Gerontol A Biol Sci Med Sci. 1997; 52: M61
        • Kress B.C.
        Bone alkaline phosphatase: Methods of quantitation and clinical utility.
        J Clin Ligand Assay. 1998; 21: 139
        • Kress B.C.
        • Mizrahi I.A.
        • Armour K.W.
        • et al.
        Use of bone alkaline phosphatase to monitor alendronate therapy in individual postmenopausal osteoporotic women.
        Clin Chem. 1999; 45: 1009
        • Liberman U.A.
        • Weiss S.R.
        • Broil J.
        • et al.
        Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis.
        N Engl J Med. 1995; 33: 1437
        • Low M.G.
        • Saltiel A.R.
        Structural and functional roles of glycosyl-phosphatidylinositol in membranes.
        Science. 1988; 239: 268
        • Marcus R.
        • Holloway L.
        • Wells B.
        • et al.
        The relationship of biochemical markers of bone turnover to bone density changes in postmenopausal women: Results from the Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial.
        J Bone Miner Res. 1999; 14: 1583
        • Martin M.
        • Van Hoof V.
        • Couttenye M.
        • et al.
        Analytical and clinical evaluation of a method to quantify bone alkaline phosphatase, a marker of osteoblastic activity.
        Anticancer Res. 1997; 17: 3167
        • Melkko J.
        • Kauppila S.
        • Niemi S.
        • et al.
        Immunoassay for intact amino-terminal propeptide of human type I procollagen.
        Clin Chem. 1996; 42: 947
        • Melton L.J.
        • Khosla S.
        • Atkinson E.J.
        • et al.
        Relationship of bone markers to bone density and fractures.
        J Bone Miner Res. 1997; 12: 1083
        • Minisola S.
        • Romagnoli E.
        • Scarnecchia L.
        • et al.
        Serum carboxy-terminal propetide of human type I procollagen in patients with primary hyperparathyroidism: Studies in basal conditions and after parathyroid surgery.
        Eur J Endocrinol. 1994; 130: 587
        • Minisola S.
        • Rosso R.
        • Romangnoli E.
        • et al.
        Serum osteocalcin and bone mineral density at various skeletal sites: A study performed with three different assays.
        J Lab Clin Med. 1997; 129: 422
        • Miura H.
        • Yamamoto I.
        • Yuu I.
        • et al.
        Estimation of bone mineral density and bone loss by means of bone metabolic markers in postmenopausal women.
        Endocrine J. 1995; 42: 797
        • Monaghan D.A.
        • Power M.J.
        • Fottrell P.F.
        Sandwich enzyme immunoassay of osteocalcin in serum with use of an antibody against human osteocalcin.
        Clin Chem. 1993; 39: 1003
        • Morris H.
        • Wishart J.M.
        • Horowitz M.
        • et al.
        The reproducibility of bone-related biochemical variables in post-menopausal women.
        Ann Clin Biochem. 1990; 27: 562
        • Nielsen H.
        • Brixen K.
        • Mosekilde L.
        Diurnal rhythm in serum activity of wheat-germ lectin precipitable alkaline phosphatase: Temporal relationships with the diurnal rhythm of serum osteocalcin.
        Scand J Clin Invest. 1990; 50: 851
        • Olsen B.R.
        • Guzman N.A.
        • Engel J.
        • et al.
        Purification and characterization of a peptide from the carboxy-terminal region of chick tendon procollagen type I.
        Biochemistry. 1977; 16: 3030
        • Orum O.
        • Hansen M.
        • Jensen C.H.
        • et al.
        Procollagen type I N-terminal propeptide (PINP) as an indicator of type I collagen metabolism: ELISA development, reference interval, and hypovitaminosis D induced hyperparathyroidism.
        Bone. 1996; 19: 157
        • Parviainen M.
        • Kuronen I.
        • Kokko H.
        • et al.
        Two-site enzyme immunoassay for measuring intact human osteocalcin in serum.
        Bone Miner Res. 1986; 9: 347
        • Pedrazzoni M.
        • Alfano F.S.
        • Girasole G.
        Clinical observations with a new specific assay for bone alkaline phosphatase: A cross-sectional study in osteoporotic and pagetic subjects and a longitudinal evaluation of the response to ovariectomy, estrogens, and bisphosphonates.
        Calcif Tissue Int. 1996; 59: 334
        • Ravn P.
        • Christensen J.O.
        • Baumann M.
        • et al.
        Changes in biochemical markers and bone mass after withdrawal of ibandronate treatment: Prediction of bone mass changes during treatment.
        Bone. 1998; 22: 559
        • Ravn P.
        • Clemmesen B.
        • Christiansen C.
        Biochemical markers can predict the response in bone mass during alendronate treatment in early postmenopausal women.
        Bone. 1999; 24: 237
        • Ravn P.
        • Rix M.
        • Andreassen H.
        • et al.
        High bone turnover is associated with low bone mass and spinal fracture in postmenopausal women.
        Calcif Tissue Int. 1997; 60: 255
        • Rosen C.
        • Chesnut C.H.
        • Mallinak N.J.S.
        The predictive value of biochemical markers of bone turnover for bone mineral density in early postmenopausal women treated with hormone replacement or calcium supplementation.
        J Clin Endocrinol Metab. 1998; 82: 1904
        • Rosen H.N.
        • Moses A.C.
        • Garber J.
        • et al.
        Utility of biochemical markers of bone turnover in the follow-up of patients treated with bisphosphonates.
        Calcif Tissue Int. 1998; 63: 363
        • Rosenquist C.
        • Quist P.
        • Bjarnason N.
        • et al.
        Measurement of a more stable region of osteocalcin in serum by ELISA with two monoclonal antibodies.
        Clin Chem. 1995; 41: 1439
        • Ross P.D.
        • Knowlton W.
        Rapid bone loss is associated with increased levels of biochemical markers.
        J Bone Miner Res. 1998; 13: 297
        • Seibel M.J.
        • Baylink D.J.
        • Farley J.R.
        • et al.
        Basic science and clinical utility of biochemical markers of bone turnover.
        Exp Clin Endocrinol Diabetes. 1997; 105: 125
        • Sharp C.A.
        • Ristelli J.
        • Ristelli L.
        • et al.
        Type I procollagen propeptide ratio responds rapidly to pamidronate in Paget’s disease of bone.
        J Bone Miner Res. 1997; 12: 672
        • Smedsrod B.
        • Melkko J.
        • Risteli L.
        • et al.
        Circulating C-terminal propetide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells.
        Biochem J. 1990; 271: 345
        • Szulc P.
        • Chapuy M.C.
        • Meunier P.
        • et al.
        Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women.
        J Clin Invest. 1993; 91: 1769
        • Szulc P.
        • Arlot M.
        • Chapuy M.C.
        • et al.
        Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women.
        J Bone Miner Res. 1994; 9: 1591
        • Szulc P.
        • Chapuy M.C.
        • Meunier P.
        • et al.
        Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture: A three year follow-up study.
        Bone. 1996; 18: 487
        • Takahashi M.
        • Kushida K.
        • Hoshino H.
        • et al.
        Comparison of bone and total alkaline phosphatase activity on bone turnover during menopause and in patients with established osteoporosis.
        Clin Endocrinol. 1997; 47: 177
        • Taylor A.K.
        • Linkhart S.
        • Mohan S.
        • et al.
        Multiple osteocalcin fragments in human urine and serum as detected by a midmolecule osteocalcin radioimmunoassay.
        J Clin Endocrinol Metab. 1990; 70: 467
        • Uebelhart D.
        • Schlemmer A.
        • Johansen J.S.
        • et al.
        Effect of menopause and hormone replacement therapy on the urinary excretion of pyridinium crosslinks.
        J Clin Endocrinol Metab. 1991; 72: 367
        • Vergnaud P.
        • Garnero P.
        • Meunier P.
        • et al.
        Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women. The EPIDOS study.
        J Clin Endocrinol Metab. 1997; 82: 719
        • Weiss M.J.
        • Ray K.
        • Henthorn P.S.
        • et al.
        Structure of the human liver/bone/kidney alkaline phosphatase gene.
        J Biol Chem. 1988; 263: 12002
        • Whyte M.P.
        Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization.
        Endocr Rev. 1994; 15: 439
        • Woitge H.
        • Seibel M.J.
        • Ziegler R.
        Comparison of total and bone-specific alkaline phosphastase in patients with nonskeletal disorders or metabolic bone disease.
        Clin Chem. 1996; 42: 1796