Research Article| Volume 21, ISSUE 3, P661-678, September 2001

Current Laboratory Methods for Biological Threat Agent Identification

      This paper is only available as a PDF. To read, Please Download here.
      The global proliferation of biological warfare technologies remains a significant threat to public health. The clinical laboratory has an important role in the national response to bioterrorism. Many of the biological threat agents that could be used in weapons of mass destruction, however, are unfamiliar to health care providers and medical technologists. Definitive identification of most agents requires an approach that integrates clinical observations, classical culture methods, immunodiagnostic assays, and nucleic acid analysis. This article presents analytical approaches that could be adapted by clinical laboratories and reference laboratories for identifying the most important biological threats.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Batt CA: Use of IsoCode Stix for the preparation of blood sample destined for allelic PCR-based assays. Applications Note # 644, Schleicher and Schuell, 1996

        • Bauernfeind A.
        • Roller C.
        • Meyer D.
        • et al.
        Molecular procedure for rapid detection of Burkholderia mallei and Burkholderia pseudomallei.
        J Clin Microbiol. 1998; 36: 2737
        • Belgrader P.
        • Hansford D.
        • Kovacs D.A.
        • et al.
        A minisonicator to rapidly disrupt bacterial spores.
        Anal Chem. 1999; 71: 4232
        • Belgrader P.
        • Okuzumi M.
        • Pourahmadi F.
        • et al.
        A microfludic cartridge to prepare spores for PCR analysis.
        Biosens Bioelectron. 2000; 14: 849
        • Boom R.
        • Sol C.J.
        • Salimans M.M.
        • et al.
        Rapid and simple method for purification of nucleic acids.
        I Clin Microbiol. 1990; 28: 495
        • Bricker B.J.
        • Halling S.M.
        Differentiation of Brucella abortus bv 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR.
        J Clin Microbiol. 1994; 32: 2660
        • Burghoff R.L.
        Isolation and PCR amplification of a polymorphic locus; VNTR D1S80, from dried human saliva used IsoCode.
        Journal of National Institutes of Health Research. 1996; 8: 72
        • Campbell K.D.
        • Collins M.D.
        • East A.K.
        Gene probes for identification of the botulinal neurotoxin gene and specific identification of neurotoxin types B, E, and F.
        J Clin Microbiol. 1993; 3: 2255
        • Carducci E.
        • Ellul L.
        • Anatonozzi I.
        • et al.
        DNA elution and amplification by polymerase chain reaction from dried blood spots.
        Biotechniques. 1992; 13: 735
      2. Carnegie Endowment for International Peace: Australia group page. Available at

      3. Centers for Disease Control and Prevention: Clinical aspects of critical biological agents. Available at

        • Cieslak T.J.
        • Rowe J.R.
        • Kortepeter M.G.
        • et al.
        A field-expedient algorithmic approach to the clinical management of chemical and biological casualties.
        Mil Med. 2000; 165: 659
      4. Code of Federal Regulations: Additional requirements for facilities transferring or receiving select agents, Title 42, vol 1, Part 72, section 72.6. Denver, CO, US Government Printing Office, 1997

      5. Code of Federal Regulations: Occupational Safety and Health Standards, Toxic and Hazardous Standards, Blood-borne Pathogens, Title 29, vol 6, part 1910, section 1910.1030. Denver, Co, US Government Printing Office, 1999, p 261

      6. Committee on R&D Needs for Improving Civilian Medical Response to Chemical and Biological Terrorism Incidents, National Research Council: Chemical and Biological Terrorism: Research and Development to Improve Civilian Medical Response. Washington, DC, National Academy Press, 1999, p 65

        • Doane F.W.
        Electron microscope and immunoelectron microscopy.
        in: Spector S. Lancz G.J. Clinical Virology Manual. Elsevier, New York1986: 71
        • Franz D.R.
        • Jahrling P.B.
        • Friedlander A.M.
        • et al.
        Clinical recognition and management of patients exposed to biological warfare agents.
        JAMA. 1997; 278: 399
        • Friedlander A.M.
        • Welkos S.L.
        • Pitt M.L.
        • et al.
        Postexposure prophylaxis against experimental inhalation anthrax.
        J Infect Dis. 1993; 167: 1239
        • Fulop M.
        • Leslie D.
        • Titball R.A.
        A rapid, highly sensitive method for the detection of Francisella tularensis in clinical samples using the polymerase chain reaction.
        Am J Trop Med Hyg. 1996; 54: 364
        • Gatto-Menking D.L.
        • Yu H.
        • Bruno J.G.
        • et al.
        Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrochemiluminescence sensor.
        Biosens Bioelectron. 1995; 10: 501
        • Gilchrist M.J.R.
        A national laboratory network for bioterrorism: Evolution from a prototype network of laboratories performing routine surveillance.
        Mil Med. 2000; 156: 28
        • Gilligan K.
        • Shipley M.
        • Stiles B.
        • et al.
        Identification of Staphylococcus aureus enterotoxins A and B genes by PCR-ELISA.
        Mol Cell Probes. 2000; 14: 71
        • Hail A.S.
        • Rossi C.A.
        • Ludwig G.V.
        • et al.
        Comparison of noninvasive sampling sites for early detection of Bacillus anthracis spores from rhesus monkeys after aerosol exposure.
        Mil Med. 1999; 164: 833
        • Harty L.C.
        • Garcia-Closas M.
        • Rothman N.
        • et al.
        Collection of buccal cell DNA using treated cards.
        Cancer Epidemiol Biomarkers Prev. 2000; 9: 501
        • Henchal E.A.
        • Ibrahim M.S.
        Evaluation of polymerase chain reaction assays for identifying biological agents.
        in: Stopa P.I. Bartoszeze M.A. Rapid Methods for Analysis of Biological Materials in the Environment. The Netherlands, Kluwer Academic Publishers, Amsterdam2000: 239
        • Henchal E.A.
        • Teska J.D.
        • Ezzell J.W.
        Responding to biological terrorism: A role for the clinical laboratory.
        Clinical Laboratory News. 2000; 26: 14
        • Higgins J.A.
        • Ezzell J.
        • Hinnebusch B.J.
        • et al.
        5’ nuclease PCR assay to detect Yersinia pestis.
        J Clin Microbiol. 1998; 36: 2284
        • Higgins J.A.
        • Hubalek Z.
        • Halouzka J.
        • et al.
        Detection of Francisella tularensis in infected mammals and vectors using a probe-based polymerase chain reaction.
        Am J Trop Med Hyg. 2000; 62: 310
        • Higgins J.S.
        • Ibrahim M.S.
        • Knauert F.K.
        • et al.
        Sensitive and rapid identification of biological threat agents.
        New York Academy of Science. 2000; 894: 130
        • Ibrahim M.S.
        • Lofts R.S.
        • Jahrling P.B.
        • et al.
        Real-time microchip PCR for detecting singlebase differences in viral and human DNA.
        Anal Chem. 1998; 70: 2013
        • Iqbal S.S.
        • Chambers J.P.
        • Goode M.T.
        • et al.
        Detection of Yersinia pestis by pesticin fluorogenic probe-coupled PCR.
        Mol Cell Probes. 2000; 14: 109
        • Kijek T.M.
        • Rossi C.A.
        • Moss D.
        • et al.
        Rapid and sensitive immunomagnetic-electrochemi-luminescent detection of staphylococcal enterotoxin B.
        J Immunol Methods. 2000; 236: 9
        • Kolavic S.A.
        • Kimura A.
        • Simons S.L.
        • et al.
        An outbreak of Shigella dysenteriae type 2 among laboratory workers due to intentional food contamination.
        JAMA. 1997; 278: 396
        • Leal-Klevezas D.S.
        • Martinez-Vazquez I.O.
        • Garcia-Cantu J.
        • et al.
        Use of polymerase chain reaction to detect Brucella abortus biovar 1 in infected goats.
        Vet Microbiol. 2000; 75: 91
        • Leroy E.M.
        • Baize S.
        • Lu C.Y.
        • et al.
        Diagnosis of Ebola haemorrhagic fever by RT-PCR in an epidemic setting.
        J Med Virol. 2000; 60: 463
        • Linssen B.
        • Kinney R.M.
        • Aguilar P.
        • et al.
        Development of reverse transcription-PCR assays specific for detection of equine encephalitis viruses.
        J Clin Microbiol. 2000; 38: 1527
        • Livak K.J.
        • Flood S.J.
        • Marmaro J.
        • et al.
        Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization.
        PCR Methods Appl. 1995; 4: 357
        • Livak K.J.
        • Marmaro J.
        • Todd J.A.
        Towards fully automated genome-wide polymorphism screening.
        Nat Genet. 1995; 9: 341
        • Makino S.I.
        • Iinuma-Okada Y.
        • Maruyama T.
        • et al.
        Direct detection of Bacillus anthracis DNA in animals by polymerase chain reaction.
        J Clin Microbiol. 1993; 31: 547
        • McLauchlin J.
        • Narayanan G.L.
        • Mithani V.
        • et al.
        The detection of enterotoxins and toxic shock syndrome toxin genes in Staphylococcus aureus by polymerase chain reaction.
        J Food Prot. 2000; 63: 479
      7. Murray P.R. Manual of Clinical Microbiology. ed 7. American Society for Microbiology, Washington, DC2001
        • Patra G.
        • Sylvestre P.
        • Ramisse V.
        • et al.
        Isolation of a specific chromosomic DNA sequence of Bacillus anthracis and its possible use in diagnosis.
        FEMS Immunol Med Microbiol. 1996; 15: 223
        • Pfeffer M.
        • Proebster B.
        • Kinney R.M.
        • et al.
        Genus-specific detection of alphaviruses by a semi-nested reverse transcription-polymerase chain reaction.
        Am J Trop Med Hyg. 1997; 57: 709
        • Ramisse V.
        • Patra G.
        • Garrigue H.
        • et al.
        Mock M: Identification and characterization of Bacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA.
        FEMS Microbiol Fett. 1996; 145: 9
        • Reif T.C.
        • Johns M.
        • Pillai S.D.
        • et al.
        Identification of capsule-forming Bacillus anthracis spores with the PCR and a novel dual-probe hybridization format.
        Appl Environ Microbiol. 1994; 60: 1622
      8. Richmond J.Y. McKinney R.W. Biosafety in Microbiological and Biomedical Laboratories. ed 4. US Government Printing Office, Washington, DC1999
        • Romero C.
        • Gamazo C.
        • Pardo M.
        • et al.
        Specific detection of Brucella DNA by PCR.
        J Clin Microbiol. 1995; 33: 615
        • Ropp S.L.
        • Jin Q.
        • Knight J.C.
        • et al.
        PCR strategy for identification and differentiation of small pox and other orthopoxviruses.
        J Clin Microbiol. 1995; 33: 2069
        • Roy R.
        • Middendorf L.R.
        Infrared fluorescent detection of D1S80 alleles from blood and body fluid collected on IsoCode devices.
        Biotechniques. 1997; 23: 942
        • Sanchez A.
        • Ksiazek T.G.
        • Rollin P.E.
        • et al.
        Detection and molecular characterization of Ebola viruses causing disease in human and nonhuman primates.
        J Infect Dis. 1999; 179: SI64
        • Sarkar J.K.
        • Mitra A.C.
        • Mukherjee M.K.
        • et al.
        Virus excretion in smallpox, II. Excretion in the throats of household contacts.
        Bull World Health Organ. 1973; 48: 523
        • Schmitz F.J.
        • Steiert M.
        • Hofmann B.
        • et al.
        Development of a multiplex-PCR for direct detection of the genes for enterotoxin B and C, and toxic shock syndrome toxin-1 in Staphylococcus aureus isolates.
        J Med Microbiol. 1998; 47: 335
        • Sirisanthana T.
        • Nelson K.E.
        • Ezzell J.W.
        • et al.
        Serological studies of patients with cutaneous and oral-oropharyngeal anthrax from northern Thailand.
        Am J Trop Med Hyg. 1988; 39: 575
      9. Snyder J.W. Cumitech 33: Biological Agents Associated with Bioterrorism. American Society for Microbiology, Washington, DC2000
        • Szabo E.A.
        • Pemberton J.M.
        • Gibson A.M.
        • et al.
        Application of PCR to a clinical and environmental investigation of a case of equine botulism.
        J Clin Microbiol. 1994; 32: 1986
        • Taylor M.T.
        • Belgrader P.
        • Furman B.J.
        • et al.
        Lysing bacterial spores by sonication through a flexible interface in a microfluidic system.
        Anal Chem. 2001; 73: 492
        • Teska J.D.
        • Coyne S.R.
        • Henchal E.A.
        • et al.
        Rapid viability assessment of biological threat agents.
        Biomedical Letters. 1998; 58: 155
        • Torok T.J.
        • Tauxe R.V.
        • Wise R.P.
        • et al.
        A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars.
        JAMA. 1997; 278: 389
        • Tsukano H.
        • Itoh K.
        • Suzuki S.
        • et al.
        Detection and identification of Yersinia pestis by polymerase chain reaction (PCR) using multiplex primers.
        Microbiol Immunol. 1996; 40: 773
        • Weaver S.C.
        • Salas R.
        • Rico-Hesse R.
        • et al.
        Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America. VEE Study Group.
        Lancet. 1996; 348: 436
        • Whelen A.C.
        • Pershing D.H.
        The role of nucleic acid amplification and detection in the clinical microbiology laboratory.
        Ann Rev Microbiol. 1995; 50: 349
        • Yang H.
        • Leland J.K.
        • Yost D.
        • et al.
        Electrochemiluminescence: A new diagnostic and research tool. ECL detection technology promises scientists new “yardsticks” for quantification.
        Biotechnology. 1994; 12: 193