Advertisement
Review Article| Volume 37, ISSUE 4, P821-853, December 2017

Diagnosis of Plasma Cell Dyscrasias and Monitoring of Minimal Residual Disease by Multiparametric Flow Cytometry

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Shapiro-Shelef M.
        • Calame K.
        Plasma cell differentiation and multiple myeloma.
        Curr Opin Immunol. 2004; 16: 226-234
        • Shapiro-Shelef M.
        • Calame K.
        Regulation of plasma-cell development.
        Nat Rev Immunol. 2005; 5: 230-242
        • Nutt S.L.
        • Hodgkin P.D.
        • Tarlinton D.M.
        • et al.
        The generation of antibody-secreting plasma cells.
        Nat Rev Immunol. 2015; 15: 160-171
        • Sze D.M.
        • Toellner K.M.
        • Garcia de Vinuesa C.
        • et al.
        Intrinsic constraint on plasmablast growth and extrinsic limits of plasma cell survival.
        J Exp Med. 2000; 192: 813-821
        • Chu V.T.
        • Beller A.
        • Nguyen T.T.
        • et al.
        The long-term survival of plasma cells.
        Scand J Immunol. 2011; 73: 508-511
        • Mackay F.
        • Schneider P.
        • Rennert P.
        • et al.
        BAFF AND APRIL: a tutorial on B cell survival.
        Annu Rev Immunol. 2003; 21: 231-264
        • Moreaux J.
        • Legouffe E.
        • Jourdan E.
        • et al.
        BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone.
        Blood. 2004; 103: 3148-3157
        • Belnoue E.
        • Pihlgren M.
        • McGaha T.L.
        • et al.
        APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells.
        Blood. 2008; 111: 2755-2764
        • Minges Wols H.A.
        • Underhill G.H.
        • Kansas G.S.
        • et al.
        The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity.
        J Immunol. 2002; 169: 4213-4221
        • Nutt S.L.
        • Hodgkin P.D.
        • Tarlinton D.M.
        • et al.
        The generation of antibody-secreting plasma cells.
        Nat Rev Immunol. 2015; 15: 160-171
        • Kuehl W.M.
        • Bergsagel P.L.
        Multiple myeloma: evolving genetic events and host interactions.
        Nat Rev Cancer. 2002; 2: 175-187
        • Anderson K.C.
        • Carrasco R.D.
        Pathogenesis of myeloma.
        Annu Rev Pathol. 2011; 6: 249-274
        • Bakkus M.H.
        • Heirman C.
        • Van Riet I.
        • et al.
        Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation.
        Blood. 1992; 80: 2326
        • Kyle R.A.
        • Rajkumar S.V.
        Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma.
        Leukemia. 2009; 23: 3-9
        • Slovak M.L.
        Multiple myeloma: current perspectives.
        Clin Lab Med. 2011; 31 (x): 699-724
        • International Myeloma Working Group
        Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group.
        Br J Haematol. 2003; 121: 749-757
        • Kyle R.A.
        • Finkelstein S.
        • Elveback L.R.
        • et al.
        Incidence of monoclonal proteins in a Minnesota community with a cluster of multiple myeloma.
        Blood. 1972; 40: 719-724
        • Saleun J.P.
        • Vicariot M.
        • Deroff P.
        • et al.
        Monoclonal gammopathies in the adult population of Finistère, France.
        J Clin Pathol. 1982; 35: 63-68
        • Axelsson U.
        • Bachmann R.
        • Hallen J.
        Frequency of pathological proteins (M-components) on 6,995 sera from an adult population.
        Acta Med Scand. 1966; 179: 235-247
        • Bianchi G.
        • Munshi N.C.
        Pathogenesis beyond the cancer clone(s) in multiple myeloma.
        Blood. 2015; 125: 3049-3058
        • Pittaluga S.
        • Wlodarska I.
        • Pulford K.
        • et al.
        The monoclonal antibody ALK1 identifies a distinct morphological subtype of anaplastic large cell lymphoma associated with 2p23/ALK rearrangements.
        Am J Pathol. 1997; 151: 343-351
        • Rajkumar S.V.
        • Landgren O.
        • Mateos M.-V.
        Smoldering multiple myeloma.
        Blood. 2015; 125: 3069
        • Perez-Persona E.
        • Vidriales M.B.
        • Mateo G.
        • et al.
        New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells.
        Blood. 2007; 110: 2586-2592
        • Campana D.
        • Coustan-Smith E.
        Minimal residual disease studies by flow cytometry in acute leukemia.
        Acta Haematol. 2004; 112: 8-15
        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2016.
        CA Cancer J Clin. 2016; 66: 7-30
        • Noll J.E.
        • Williams S.A.
        • Tong C.M.
        • et al.
        Myeloma plasma cells alter the bone marrow microenvironment by stimulating the proliferation of mesenchymal stromal cells.
        Haematologica. 2014; 99: 163-171
        • Avet-Loiseau H.
        • Daviet A.
        • Brigaudeau C.
        • et al.
        Cytogenetic, interphase, and multicolor fluorescence in situ hybridization analyses in primary plasma cell leukemia: a study of 40 patients at diagnosis, on behalf of the Intergroupe Francophone du Myelome and the Groupe Francais de Cytogenetique Hematologique.
        Blood. 2001; 97: 822-825
        • Dimopoulos M.A.
        • Palumbo A.
        • Delasalle K.B.
        • et al.
        Primary plasma cell leukaemia.
        Br J Haematol. 1994; 88: 754-759
        • Garcia-Sanz R.
        • Orfao A.
        • Gonzalez M.
        • et al.
        Primary plasma cell leukemia: clinical, immunophenotypic, DNA ploidy, and cytogenetic characteristics.
        Blood. 1999; 93: 1032-1037
        • Boll M.
        • Parkins E.
        • O'Connor S.J.
        • et al.
        Extramedullary plasmacytoma are characterized by a 'myeloma-like' immunophenotype and genotype and occult bone marrow involvement.
        Br J Haematol. 2010; 151: 525-527
        • Hu Y.
        • Wang M.
        • Chen Y.
        • et al.
        Immunophenotypic analysis of abnormal plasma cell clones in bone marrow of primary systemic light chain amyloidosis patients.
        Chin Med J. 2014; 127: 2765-2770
        • Paiva B.
        • Vidriales M.B.
        • Perez J.J.
        • et al.
        The clinical utility and prognostic value of multiparameter flow cytometry immunophenotyping in light-chain amyloidosis.
        Blood. 2011; 117: 3613-3616
        • Ocqueteau M.
        • Orfao A.
        • Almeida J.
        • et al.
        Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma.
        Am J Pathol. 1998; 152: 1655-1665
        • Sarasquete M.E.
        • Garcia-Sanz R.
        • Gonzalez D.
        • et al.
        Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry.
        Haematologica. 2005; 90: 1365-1372
        • Orfao A.
        • Ortuno F.
        • de Santiago M.
        • et al.
        Immunophenotyping of acute leukemias and myelodysplastic syndromes.
        Cytometry A. 2004; 58: 62-71
        • Vidriales M.B.
        • San-Miguel J.F.
        • Orfao A.
        • et al.
        Minimal residual disease monitoring by flow cytometry.
        Best Pract Res Clin Haematol. 2003; 16: 599-612
        • van Dongen J.J.
        • Lhermitte L.
        • Bottcher S.
        • et al.
        EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes.
        Leukemia. 2012; 26: 1908-1975
        • Foon K.A.
        • Todd 3rd, R.F.
        Immunologic classification of leukemia and lymphoma.
        Blood. 1986; 68: 1-31
        • van Dongen J.J.
        • Adriaansen H.J.
        • Hooijkaas H.
        Immunophenotyping of leukaemias and non-Hodgkin's lymphomas. Immunological markers and their CD codes.
        Neth J Med. 1988; 33: 298-314
        • Terstappen L.W.
        • Johnsen S.
        • Segers-Nolten I.M.
        • et al.
        Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry.
        Blood. 1990; 76: 1739-1747
        • Kumar S.
        • Paiva B.
        • Anderson K.C.
        • et al.
        International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma.
        Lancet Oncol. 2016; 17: e328-e346
        • San Miguel J.F.
        • Gonzalez M.
        • Gascon A.
        • et al.
        Immunophenotypic heterogeneity of multiple myeloma: influence on the biology and clinical course of the disease. Castellano-Leones (Spain) Cooperative Group for the Study of Monoclonal Gammopathies.
        Br J Haematol. 1991; 77: 185-190
        • Rawstron A.C.
        • Davies F.E.
        • DasGupta R.
        • et al.
        Flow cytometric disease monitoring in multiple myeloma: the relationship between normal and neoplastic plasma cells predicts outcome after transplantation.
        Blood. 2002; 100: 3095-3100
        • San Miguel J.F.
        • Almeida J.
        • Mateo G.
        • et al.
        Immunophenotypic evaluation of the plasma cell compartment in multiple myeloma: a tool for comparing the efficacy of different treatment strategies and predicting outcome.
        Blood. 2002; 99: 1853-1856
        • Paiva B.
        • Almeida J.
        • Perez-Andres M.
        • et al.
        Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders.
        Cytometry B Clin Cytom. 2010; 78: 239-252
        • Nadav L.
        • Katz B.Z.
        • Baron S.
        • et al.
        Diverse niches within multiple myeloma bone marrow aspirates affect plasma cell enumeration.
        Br J Haematol. 2006; 133: 530-532
        • Ng A.P.
        • Wei A.
        • Bhurani D.
        • et al.
        The sensitivity of CD138 immunostaining of bone marrow trephine specimens for quantifying marrow involvement in MGUS and myeloma, including samples with a low percentage of plasma cells.
        Haematologica. 2006; 91: 972-975
        • Harada H.
        • Kawano M.M.
        • Huang N.
        • et al.
        Phenotypic difference of normal plasma cells from mature myeloma cells.
        Blood. 1993; 81: 2658-2663
        • Mateo G.
        • Montalban M.A.
        • Vidriales M.B.
        • et al.
        Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy.
        J Clin Oncol. 2008; 26: 2737-2744
        • Mateo Manzanera G.
        • San Miguel Izquierdo J.F.
        • Orfao de Matos A.
        Immunophenotyping of plasma cells in multiple myeloma.
        Methods Mol Med. 2005; 113: 5-24
        • Pellat-Deceunynck C.
        • Bataille R.
        Normal and malignant human plasma cells: proliferation, differentiation, and expansions in relation to CD45 expression.
        Blood Cells Mol Dis. 2004; 32: 293-301
        • Cannizzo E.
        • Bellio E.
        • Sohani A.R.
        • et al.
        Multiparameter immunophenotyping by flow cytometry in multiple myeloma: the diagnostic utility of defining ranges of normal antigenic expression in comparison to histology.
        Cytometry B Clin Cytom. 2010; 78: 231-238
        • Flores-Montero J.
        • de Tute R.
        • Paiva B.
        • et al.
        Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma.
        Cytometry B Clin Cytom. 2016; 90: 61-72
        • Pojero F.
        • Flores-Montero J.
        • Sanoja L.
        • et al.
        Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases.
        Cytometry B Clin Cytom. 2016; 90: 91-100
        • Oldaker T.A.
        • Wallace P.K.
        • Barnett D.
        Flow cytometry quality requirements for monitoring of minimal disease in plasma cell myeloma.
        Cytometry B Clin Cytom. 2016; 90: 40-46
        • San-Miguel J.F.
        • Vidriales M.B.
        • Orfao A.
        Immunological evaluation of minimal residual disease (MRD) in acute myeloid leukaemia (AML).
        Best Pract Res Clin Haematol. 2002; 15: 105-118
        • Wood B.
        • Jevremovic D.
        • Bene M.C.
        • et al.
        Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part V—assay performance criteria.
        Cytometry B Clin Cytom. 2013; 84: 315-323
        • Wood B.L.
        • Arroz M.
        • Barnett D.
        • et al.
        2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia.
        Cytometry B Clin Cytom. 2007; 72: S14-S22
        • Davis B.H.
        • Dasgupta A.
        • Kussick S.
        • et al.
        Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part II—preanalytical issues.
        Cytometry B Clin Cytom. 2013; 84: 286-290
        • Davis B.
        • Wood B.
        • Oldaker T.
        • et al.
        Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part I—rationale and aims.
        Cytometry B Clin Cytom. 2013; 84: 282-285
        • Barnett D.
        • Louzao R.
        • Gambell P.
        • et al.
        Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part IV—postanalytic considerations.
        Cytometry B Clin Cytom. 2013; 84: 309-314
        • Stetler-Stevenson M.
        • Davis B.
        • Wood B.
        • et al.
        2006 Bethesda International Consensus Conference on flow cytometric immunophenotyping of hematolymphoid neoplasia.
        Cytometry B Clin Cytom. 2007; 72: S3
        • Purvis N.B.
        • Oldaker T.
        Validation and quality control in clinical flow cytometry.
        in: Kottke-Marchant K. Davis B.H. Laboratory Hematology Practice. Wiley-Blackwell, Oxford2012: 115-130
        • Tanqri S.
        • Vall H.
        • Kaplan D.
        • et al.
        Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part III—analytical issues.
        Cytometry B Clin Cytom. 2013; 84: 291-308
        • Arroz M.
        • Came N.
        • Lin P.
        • et al.
        Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting.
        Cytometry B Clin Cytom. 2016; 90: 31-39
        • Stetler-Stevenson M.
        • Paiva B.
        • Stoolman L.
        • et al.
        Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition.
        Cytometry B Clin Cytom. 2016; 90: 26-30
        • Kalina T.
        • Flores-Montero J.
        • Lecrevisse Q.
        • et al.
        Quality assessment program for EuroFlow protocols: summary results of four-year (2010-2013) quality assurance rounds.
        Cytometry A. 2015; 87: 145-156
        • Rawstron A.C.
        • Orfao A.
        • Beksac M.
        • et al.
        Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders.
        Haematologica. 2008; 93: 431-438
        • Bataille R.
        • Jego G.
        • Robillard N.
        • et al.
        The phenotype of normal, reactive and malignant plasma cells. Identification of “many and multiple myelomas” and of new targets for myeloma therapy.
        Haematologica. 2006; 91: 1234-1240
        • Flores-Montero J.
        • Sanoja-Flores L.
        • Paiva B.
        • et al.
        Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma.
        Leukemia. 2017; ([Epub ahead of print])
        • Royston D.J.
        • Gao Q.
        • Nguyen N.
        • et al.
        Single-tube 10-fluorochrome analysis for efficient flow cytometric evaluation of minimal residual disease in plasma cell myeloma.
        Am J Clin Pathol. 2016; 146: 41-49
        • Roshal M.
        • Flores-Montero J.A.
        • Gao Q.
        • et al.
        MRD detection in multiple myeloma: comparison between MSKCC 10-color single-tube and EuroFlow 8-color 2-tube methods.
        Blood Adv. 2017; 1: 728
        • Ruiz-Arguelles G.J.
        • San Miguel J.F.
        Cell surface markers in multiple myeloma.
        Mayo Clin Proc. 1994; 69: 684-690
        • Guikema J.E.
        • Hovenga S.
        • Vellenga E.
        • et al.
        CD27 is heterogeneously expressed in multiple myeloma: low CD27 expression in patients with high-risk disease.
        Br J Haematol. 2003; 121: 36-43
        • Moreau P.
        • Robillard N.
        • Jégo G.
        • et al.
        Lack of CD27 in myeloma delineates different presentation and outcome.
        Br J Haematol. 2006; 132: 168-170
        • Robillard N.
        • Jego G.
        • Pellat-Deceunynck C.
        • et al.
        CD28, a marker associated with tumoral expansion in multiple myeloma.
        Clin Cancer Res. 1998; 4: 1521-1526
        • Jackson N.
        • Ling N.R.
        • Ball J.
        • et al.
        An analysis of myeloma plasma cell phenotype using antibodies defined at the IIIrd International Workshop on Human Leucocyte Differentiation Antigens.
        Clin Exp Immunol. 1988; 72: 351-356
        • Shapiro V.S.
        • Mollenauer M.N.
        • Weiss A.
        Endogenous CD28 expressed on myeloma cells up-regulates interleukin-8 production: implications for multiple myeloma progression.
        Blood. 2001; 98: 187-193
        • Nair J.R.
        • Carlson L.M.
        • Koorella C.
        • et al.
        CD28 expressed on malignant plasma cells induces a pro-survival and immunosuppressive microenvironment.
        J Immunol. 2011; 187: 1243-1253
        • Reinherz E.L.
        • Kung P.C.
        • Goldstein G.
        • et al.
        Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage.
        Proc Natl Acad Sci U S A. 1980; 77: 1588-1592
        • Reinherz E.L.
        • Schlossman S.F.
        The characterization and function of human immunoregulatory T lymphocyte subsets.
        Immunol Today. 1981; 2: 69-75
        • Bataille R.
        • Robillard N.
        • Pellat-Deceunynck C.
        • et al.
        A cellular model for myeloma cell growth and maturation based on an intraclonal CD45 hierarchy.
        Immunol Rev. 2003; 194: 105-111
        • Kumar S.
        • Rajkumar S.V.
        • Kyle R.A.
        • et al.
        Prognostic value of circulating plasma cells in monoclonal gammopathy of undetermined significance.
        J Clin Oncol. 2005; 23: 5668-5674
        • Moreau P.
        • Robillard N.
        • Avet-Loiseau H.
        • et al.
        Patients with CD45 negative multiple myeloma receiving high-dose therapy have a shorter survival than those with CD45 positive multiple myeloma.
        Haematologica. 2004; 89: 547-551
        • Pellatdeceunynck C.
        • Barille S.
        • Puthier D.
        • et al.
        Adhesion molecules on human myeloma cells—significant changes in expression related to malignancy, tumor spreading, and immortalization.
        Cancer Res. 1995; 55: 3647-3653
        • Pellat-Deceunynck C.
        • Barille S.
        • Jego G.
        • et al.
        The absence of CD56 (NCAM) on malignant plasma cells is a hallmark of plasma cell leukemia and of a special subset of multiple myeloma.
        Leukemia. 1998; 12: 1977-1982
        • Ely S.A.
        • Knowles D.M.
        Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gammopathy of undetermined significance and lymphomas with plasmacytoid differentiation.
        Am J Pathol. 2002; 160: 1293-1299
        • Sahara N.
        • Takeshita A.
        Prognostic significance of surface markers expressed in multiple myeloma: CD56 and other antigens.
        Leuk Lymphoma. 2004; 45: 61-65
        • Langebrake C.
        • Brinkmann I.
        • Teigler-Schlegel A.
        • et al.
        Immunophenotypic differences between diagnosis and relapse in childhood AML: implications for MRD monitoring.
        Cytometry B Clin Cytom. 2005; 63: 1-9
        • Paiva B.
        • Gutierrez N.C.
        • Chen X.
        • et al.
        Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients.
        Leukemia. 2012; 26: 1862-1869
        • Bataille R.
        • Pellat-Deceunynck C.
        • Robillard N.
        • et al.
        CD117 (c-kit) is aberrantly expressed in a subset of MGUS and multiple myeloma with unexpectedly good prognosis.
        Leuk Res. 2008; 32: 379-382
        • Schmidt-Hieber M.
        • Pérez-Andrés M.
        • Paiva B.
        • et al.
        CD117 expression in gammopathies is associated with an altered maturation of the myeloid and lymphoid hematopoietic cell compartments and favorable disease features.
        Haematologica. 2011; 96: 328-332
        • Kraj M.
        • Poglod R.
        • Kopec-Szlezak J.
        • et al.
        C-kit receptor (CD117) expression on plasma cells in monoclonal gammopathies.
        Leuk Lymphoma. 2004; 45: 2281-2289
        • Ridley R.C.
        • Xiao H.
        • Hata H.
        • et al.
        Expression of syndecan regulates human myeloma plasma cell adhesion to type I collagen.
        Blood. 1993; 81: 767-774
        • Yang Y.
        • Borset M.
        • Langford J.K.
        • et al.
        Heparan sulfate regulates targeting of syndecan-1 to a functional domain on the cell surface.
        J Biol Chem. 2003; 278: 12888-12893
        • Dhodapkar M.V.
        • Kelly T.
        • Theus A.
        • et al.
        Elevated levels of shed syndecan-1 correlate with tumour mass and decreased matrix metalloproteinase-9 activity in the serum of patients with multiple myeloma.
        Br J Haematol. 1997; 99: 368-371
        • Jourdan M.
        • Ferlin M.
        • Legouffe E.
        • et al.
        The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells.
        Br J Haematol. 1998; 100: 637-646
        • San Antonio J.D.
        • Karnovsky M.J.
        • Gay S.
        • et al.
        Interactions of syndecan-1 and heparin with human collagens.
        Glycobiology. 1994; 4: 327-332
        • Mahnke Y.D.
        • Roederer M.
        Optimizing a multi-colour immunophenotyping assay.
        Clin Lab Med. 2007; 27 (v): 469
        • Rawstron A.C.
        • Fazi C.
        • Agathangelidis A.
        • et al.
        A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study.
        Leukemia. 2016; 30: 929-936
        • Nowakowski G.S.
        • Witzig T.E.
        • Dingli D.
        • et al.
        Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma.
        Blood. 2005; 106: 2276-2279
        • Dingli D.
        • Nowakowski G.S.
        • Dispenzieri A.
        • et al.
        Flow cytometric detection of circulating myeloma cells before transplantation in patients with multiple myeloma: a simple risk stratification system.
        Blood. 2006; 107: 3384-3388
        • Lin P.
        • Owens R.
        • Tricot G.
        • et al.
        Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma.
        Am J Clin Pathol. 2004; 121: 482-488
        • Tario J.D.
        • Wallace P.K.
        Reagents and cell staining for immunophenotyping by flow cytometry.
        in: McManus L.M. Mitchell R.N. Pathobiology of human disease. Elsevier, San Diego (CA)2014: 3678-3701
        • Lahuerta J.J.
        • Martinez-Lopez J.
        • Serna J.D.
        • et al.
        Remission status defined by immunofixation vs. electrophoresis after autologous transplantation has a major impact on the outcome of multiple myeloma patients.
        Br J Haematol. 2000; 109: 438-446
        • Richardson P.G.
        • Barlogie B.
        • Berenson J.
        • et al.
        A phase 2 study of bortezomib in relapsed, refractory myeloma.
        N Engl J Med. 2003; 348: 2609-2617
        • Bradwell A.R.
        • Carr-Smith H.D.
        • Mead G.P.
        • et al.
        Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine.
        Clin Chem. 2001; 47: 673-680
        • Blade J.
        • Rosinol L.
        • Cibeira M.T.
        • et al.
        Hematopoietic stem cell transplantation for multiple myeloma beyond 2010.
        Blood. 2010; 115: 3655-3663
        • Attal M.
        • Harousseau J.-L.
        • Stoppa A.-M.
        • et al.
        A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma.
        N Engl J Med. 1996; 335: 91-97
        • Barlogie B.
        • Jagannath S.
        • Vesole D.H.
        • et al.
        Superiority of tandem autologous transplantation over standard therapy for previously untreated multiple myeloma.
        Blood. 1997; 89: 789-793
        • Kyle R.A.
        • Leong T.
        • Li S.
        • et al.
        Complete response in multiple myeloma: clinical trial E9486, an Eastern Cooperative Oncology Group study not involving stem cell transplantation.
        Cancer. 2006; 106: 1958-1966
        • Lahuerta J.J.
        • Mateos M.V.
        • Martinez-Lopez J.
        • et al.
        Influence of pre- and post-transplantation responses on outcome of patients with multiple myeloma: sequential improvement of response and achievement of complete response are associated with longer survival.
        J Clin Oncol. 2008; 26: 5775-5782
        • Niesvizky R.
        • Richardson P.G.
        • Rajkumar S.V.
        • et al.
        The relationship between quality of response and clinical benefit for patients treated on the bortezomib arm of the international, randomized, phase 3 APEX trial in relapsed multiple myeloma.
        Br J Haematol. 2008; 143: 46-53
        • Hoering A.
        • Crowley J.
        • Shaughnessy Jr., J.D.
        • et al.
        Complete remission in multiple myeloma examined as time-dependent variable in terms of both onset and duration in Total Therapy protocols.
        Blood. 2009; 114: 1299-1305
        • Chou T.
        Multiple myeloma: recent progress in diagnosis and treatment.
        J Clin Exp Hematop. 2012; 52: 149-159
        • Laubach J.
        • Hideshima T.
        • Richardson P.
        • et al.
        Clinical translation in multiple myeloma: from bench to bedside.
        Semin Oncol. 2013; 40: 549-553
        • Laubach J.P.
        • Voorhees P.M.
        • Hassoun H.
        • et al.
        Current strategies for treatment of relapsed/refractory multiple myeloma.
        Expert Rev Hematol. 2014; 7: 97-111
        • Kocoglu M.
        • Badros A.
        The role of immunotherapy in multiple myeloma.
        Pharmaceuticals. 2016; 9: 3
        • Landgren O.
        • Gormley N.
        • Turley D.
        • et al.
        Flow cytometry detection of minimal residual disease in multiple myeloma: lessons learned at FDA-NCI roundtable symposium.
        Am J Hematol. 2014; 89: 1159-1160
        • Paiva B.
        • Cedena M.-T.
        • Puig N.
        • et al.
        Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients.
        Blood. 2016; 127: 3165
        • Roschewski M.
        • Stetler-Stevenson M.
        • Yuan C.
        • et al.
        Minimal residual disease: what are the minimum requirements?.
        J Clin Oncol. 2014; 32: 475-476
        • Rawstron A.C.
        • Child J.A.
        • de Tute R.M.
        • et al.
        Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study.
        J Clin Oncol. 2013; 31: 2540-2547
        • Landgren O.
        • Devlin S.
        • Boulad M.
        • et al.
        Role of MRD status in relation to clinical outcomes in newly diagnosed multiple myeloma patients: a meta-analysis.
        Bone Marrow Transplant. 2016; 51: 1565-1568
        • Paiva B.
        • Vidriales M.B.
        • Cervero J.
        • et al.
        Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation.
        Blood. 2008; 112: 4017-4023
        • Jasper G.A.
        • Arun I.
        • Venzon D.
        • et al.
        Variables affecting the quantitation of CD22 in neoplastic B cells.
        Cytometry B Clin Cytom. 2011; 80: 83-90
        • Morice W.G.
        • Hanson C.A.
        • Kumar S.
        • et al.
        Novel multi-parameter flow cytometry sensitively detects phenotypically distinct plasma cell subsets in plasma cell proliferative disorders.
        Leukemia. 2007; 21: 2043-2046
        • Nishihori T.
        • Song J.
        • Shain K.H.
        Minimal residual disease assessment in the context of multiple myeloma treatment.
        Curr Hematol Malig Rep. 2016; 11: 118-126
        • Hedley B.D.
        • Keeney M.
        Technical issues: flow cytometry and rare event analysis.
        Int J Lab Hematol. 2013; 35: 344-350
        • Subira D.
        • Castanon S.
        • Aceituno E.
        • et al.
        Flow cytometric analysis of cerebrospinal fluid samples and its usefulness in routine clinical practice.
        Am J Clin Pathol. 2002; 117: 952-958
        • Rawstron A.C.
        • Bottcher S.
        • Letestu R.
        • et al.
        Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL.
        Leukemia. 2013; 27: 142-149
        • Nieto W.G.
        • Almeida J.
        • Romero A.
        • et al.
        Increased frequency (12%) of circulating chronic lymphocytic leukemia-like B-cell clones in healthy subjects using a highly sensitive multicolor flow cytometry approach.
        Blood. 2009; 114: 33-37
        • Hallett W.H.
        • Jing W.
        • Drobyski W.R.
        • et al.
        Immunosuppressive effects of multiple myeloma are overcome by PD-L1 blockade.
        Biol Blood Marrow Transplant. 2011; 17: 1133-1145
        • Walker B.A.
        • Wardell C.P.
        • Johnson D.C.
        • et al.
        Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells.
        Blood. 2013; 121: 3413-3419
        • Genadieva-Stavric S.
        • Cavallo F.
        • Palumbo A.
        New approaches to management of multiple myeloma.
        Curr Treat Options Oncol. 2014; 15: 157-170
        • Liebisch P.
        • Dohner H.
        Cytogenetics and molecular cytogenetics in multiple myeloma.
        Eur J Cancer. 2006; 42: 1520-1529
        • Blade J.
        • Samson D.
        • Reece D.
        • et al.
        Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant.
        Br J Haematol. 1998; 102: 1115-1123
        • Harousseau J.-L.
        • Moreau P.
        Autologous hematopoietic stem-cell transplantation for multiple myeloma.
        N Engl J Med. 2009; 360: 2645-2654
        • Rajkumar S.V.
        Treatment of multiple myeloma.
        Nat Rev Clin Oncol. 2011; 8: 479-491
        • O’Donnell E.K.
        • Raje N.S.
        New monoclonal antibodies on the horizon in multiple myeloma.
        Ther Adv Hematol. 2017; 8: 41-53
        • Khagi Y.
        • Mark T.M.
        Potential role of daratumumab in the treatment of multiple myeloma.
        Onco Targets Ther. 2014; 7: 1095-1100
        • Frigyesi I.
        • Adolfsson J.
        • Ali M.
        • et al.
        Robust isolation of malignant plasma cells in multiple myeloma.
        Blood. 2014; 123: 1336-1340
        • Veillette A.
        • Guo H.
        CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma.
        Crit Rev Oncol Hematol. 2013; 88: 168-177
        • Puig N.
        • Sarasquete M.E.
        • Balanzategui A.
        • et al.
        Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry.
        Leukemia. 2014; 28: 391-397
        • Rasmussen T.
        • Poulsen T.S.
        • Honore L.
        • et al.
        Quantitation of minimal residual disease in multiple myeloma using an allele-specific real-time PCR assay.
        Exp Hematol. 2000; 28: 1039-1045
        • Ladetto M.
        • Bruggemann M.
        • Monitillo L.
        • et al.
        Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders.
        Leukemia. 2014; 28: 1299-1307
        • Avet-Loiseau H.
        • Corre J.
        • Lauwers-Cances V.
        • et al.
        Evaluation of minimal residual disease (MRD) by next generation sequencing (NGS) is highly predictive of progression free survival in the IFM/DFCI 2009 trial.
        Blood. 2015; 126: 191
        • Martinez-Lopez J.
        • Lahuerta J.J.
        • Pepin F.
        • et al.
        Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma.
        Blood. 2014; 123: 3073-3079
        • Munshi N.C.
        • Minvielle S.
        • Tai Y.-T.
        • et al.
        Deep Igh sequencing identifies an ongoing somatic hypermutation process with complex and evolving clonal architecture in myeloma.
        Blood. 2015; 126: 21
        • Gormley N.J.
        • Turley D.M.
        • Dickey J.S.
        • et al.
        Regulatory perspective on minimal residual disease flow cytometry testing in multiple myeloma.
        Cytometry B Clin Cytom. 2016; 90: 73-80
        • Salem D.
        • Stetler-Stevenson M.
        • Yuan C.
        • et al.
        Myeloma minimal residual disease testing in the United States: evidence of improved standardization.
        Am J Hematol. 2016; 91: E502-E503
        • Logan A.C.
        • Zhang B.
        • Narasimhan B.
        • et al.
        Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia.
        Leukemia. 2013; 27: 1659-1665
        • Wu D.
        • Sherwood A.
        • Fromm J.R.
        • et al.
        High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia.
        Sci Transl Med. 2012; 4: 134ra163
        • van der Velden V.H.
        • Hochhaus A.
        • Cazzaniga G.
        • et al.
        Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects.
        Leukemia. 2003; 17: 1013-1034
        • Paiva B.
        • Gutierrez N.C.
        • Rosinol L.
        • et al.
        High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma.
        Blood. 2012; 119: 687-691
        • Paiva B.
        • Martinez-Lopez J.
        • Vidriales M.B.
        • et al.
        Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma.
        J Clin Oncol. 2011; 29: 1627-1633
        • Rawstron A.C.
        • Paiva B.
        • Stetler-Stevenson M.
        Assessment of minimal residual disease in myeloma and the need for a consensus approach.
        Cytometry B Clin Cytom. 2016; 90: 21-25
        • Paiva B.
        • van Dongen J.J.M.
        • Orfao A.
        New criteria for response assessment: role of minimal residual disease in multiple myeloma.
        Blood. 2015; 125: 3059