Advertisement
Review Article| Volume 37, ISSUE 4, P895-913, December 2017

Flow Cytometric Evaluation of Primary Immunodeficiencies

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chapel H.
        Classification of primary immunodeficiency diseases by the International Union of Immunological Societies (IUIS) Expert Committee on Primary Immunodeficiency 2011.
        Clin Exp Immunol. 2012; 168: 58-59
      1. Online Mendelian Inheritance in Man (OMIM). An online catalog of human genes and genetic disorders. In: Online Mendelian Inheritance in Man. Available at: http://omim.org/. Accessed April 12, 2017.

        • Boyle J.M.
        • Buckley R.H.
        Population prevalence of diagnosed primary immunodeficiency diseases in the United States.
        J Clin Immunol. 2007; 27: 497-502
        • Notarangelo L.D.
        Primary immunodeficiencies.
        J Allergy Clin Immunol. 2010; 125: S182-S194
        • Chinen J.
        • Notarangelo L.D.
        • Shearer W.T.
        Advances in clinical immunology in 2015.
        J Allergy Clin Immunol. 2016; 138: 1531-1540
        • Bacchetta R.
        • Notarangelo L.D.
        Immunodeficiency with autoimmunity: beyond the paradox.
        Front Immunol. 2013; 4: 77
        • Navabi B.
        • Upton J.E.
        Primary immunodeficiencies associated with eosinophilia.
        Allergy Asthma Clin Immunol. 2016; 12: 27
        • Warnatz K.
        • Voll R.E.
        Pathogenesis of autoimmunity in common variable immunodeficiency.
        Front Immunol. 2012; 3: 210
        • McGonagle D.
        • McDermott M.F.
        A proposed classification of the immunological diseases.
        PLoS Med. 2006; 3: e297
        • O’Sullivan M.D.
        • Cant A.J.
        The 10 warning signs: a time for a change?.
        Curr Opin Allergy Clin Immunol. 2012; 12: 588-594
        • Bousfiha A.
        • Jeddane L.
        • Al-Herz W.
        • et al.
        The 2015 IUIS phenotypic classification for primary immunodeficiencies.
        J Clin Immunol. 2015; 35: 727-738
        • Wood P.
        • UK Primary Immunodeficiency Network
        Primary antibody deficiencies: recognition, clinical diagnosis and referral of patients.
        Clin Med (Lond). 2009; 9: 595-599
        • Reust C.
        Evaluation of primary immunodeficiency disease in children.
        Am Fam Physician. 2013; 87: 773-778
        • Sack U.
        • Boldt A.
        • Borte M.
        • et al.
        Novel diagnostic options for immunodeficiencies.
        Clin Biochem. 2014; 47: 724-725
        • Abraham R.S.
        • Aubert G.
        Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies.
        Clin Vaccine Immunol. 2016; 23: 254-271
        • Oliveira J.B.
        • Notarangelo L.D.
        • Fleisher T.A.
        Applications of flow cytometry for the study of primary immune deficiencies.
        Curr Opin Allergy Clin Immunol. 2008; 8: 499-509
        • Boldt A.
        • Borte S.
        • Fricke S.
        • et al.
        Eight color immunophenotyping of T-, B- and NK cell subpopulations for characterization of chronic immunodeficiencies.
        Cytometry B Clin Cytom. 2014; 86: 191-206
        • Barbaro M.
        • Ohlsson A.
        • Borte S.
        • et al.
        Newborn screening for severe primary immunodeficiency diseases in Sweden-a 2-Year Pilot TREC and KREC screening study.
        J Clin Immunol. 2017; 37: 51-60
        • Gathmann B.
        • Mahlaoui N.
        • CEREDIH
        • et al.
        • European Society for Immunodeficiencies Registry Working Party
        Clinical picture and treatment of 2212 patients with common variable immunodeficiency.
        J Allergy Clin Immunol. 2014; 134: 116-126
        • Pieper K.
        • Grimbacher B.
        • Eibel H.
        B cell biology and development.
        J Allergy Clin Immunol. 2013; 131: 959-971
        • Frazer-Abel A.
        • Sepiashvili L.
        • Mbughuni M.M.
        • et al.
        Overview of laboratory testing and clinical presentations of complement deficiencies and dysregulation.
        Adv Clin Chem. 2016; 77: 1-75
        • Fleisher T.A.
        • Dorman S.E.
        • Anderson J.A.
        • et al.
        Detection of intracellular phosphorylated STAT-1 by flow cytometry.
        Clin Immunol. 1999; 90: 425-430
        • Uzel G.
        • Frucht D.M.
        • Fleisher T.A.
        • et al.
        Detection of intracellular phosphorylated STAT-4 by flow cytometry.
        Clin Immunol. 2001; 100: 270-276
        • O’Shea J.J.
        • Plenge R.
        JAKs and STATs in immunoregulation and immune mediated disease.
        Immunity. 2012; 36: 542-550
        • De Stefano A.
        • Boldt A.
        • Schmiedel L.
        • et al.
        Flow cytometry as an important tool in the diagnosis of immunodeficiencies demonstrated in a patient with ataxia-telangiectasia.
        Laboratoriumsmedizin. 2016; 40: 255-261
        • Boldt A.
        • Kentouche K.
        • Fricke S.
        • et al.
        Differences in FOXP3 and CD127 expression in Treg-like cells in patients with IPEX syndrome.
        Clin Immunol. 2014; 153: 109-111
        • Bitar M.
        • Boldt A.
        • Binder S.
        • et al.
        Flow cytometric measurement of STAT1 and STAT3 phosphorylation in CD4+ and CD8+ T cells - clinical applications in primary immunodeficiency diagnostics.
        J Allergy Clin Immunol. 2017; S0091-6749: 30915-30916
        • Cantoni N.
        • Recher M.
        Primary and secondary immunodeficiencies.
        Ther Umsch. 2014; 71: 31-43
        • Xie X.
        • Li F.
        • Chen J.W.
        • et al.
        Risk of tuberculosis infection in anti-TNF-α biological therapy: from bench to bedside.
        J Microbiol Immunol Infect. 2014; 47: 268-274
        • Ferrari S.
        • Lougaris V.
        • Caraffi S.
        • et al.
        Mutations of the Igbeta gene cause agammaglobulinemia in man.
        J Exp Med. 2007; 204: 2047-2051
        • Kanegane H.
        • Futatani T.
        • Wang Y.
        • et al.
        Clinical and mutational characteristics of X-linked agammaglobulinemia and its carrier identified by flow cytometric assessment combined with genetic analysis.
        J Allergy Clin Immunol. 2001; 108: 1012-1020
        • Futatani T.
        • Miyawaki T.
        • Tsukada S.
        • et al.
        Deficient expression of Bruton's tyrosine kinase in monocytes from X-linked agammaglobulinemia as evaluated by a flow cytometric analysis and its clinical application to carrier detection.
        Blood. 1998; 91: 595-602
        • Warnatz K.
        • Denz A.
        • Drager R.
        • et al.
        Severe deficiency of switched memory B cells (CD27(+)IgM(-) IgD(-)) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease.
        Blood. 2002; 99: 1544-1551
        • Piqueras B.
        • Lavenu-Bombled C.
        • Galicier L.
        • et al.
        Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects.
        J Clin Immunol. 2003; 23: 385-400
        • Wehr C.
        • Kivioja T.
        • Schmitt C.
        • et al.
        The EUROclass trial: defining subgroups in common variable immunodeficiency.
        Blood. 2008; 111: 77-85
        • Berrón-Ruiz L.
        • López-Herrera G.
        • Vargas-Hernández A.
        • et al.
        Impaired selective cytokine production by CD4(+) T cells in Common Variable Immunodeficiency associated with the absence of memory B cells.
        Clin Immunol. 2016; 166–167: 19-26
        • Bossaller L.
        • Burger J.
        • Draeger R.
        • et al.
        ICOS deficiency is associated with a severe reduction of CXCR51CD4 germinal center Th cells.
        J Immunol. 2006; 177: 4927-4932
        • van Zelm M.C.
        • Reisli I.
        • van der B.M.
        • et al.
        An antibody-deficiency syndrome due to mutations in the CD19 gene.
        N Engl J Med. 2006; 354: 1901-1912
        • Kanegane H.
        • Agematsu K.
        • Futatani T.
        • et al.
        Novel mutations in a Japanese patient with CD19 deficiency.
        Genes Immun. 2007; 8: 663-670
        • Salzer U.
        • Chapel H.M.
        • Webster A.D.
        • et al.
        Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans.
        Nat Genet. 2005; 37: 820-828
        • Pan-Hammarstrom Q.
        • Salzer U.
        • Du L.
        • et al.
        Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency.
        Nat Genet. 2007; 39: 429-430
        • Borte S.
        • von Döbeln U.
        • Fasth A.
        • et al.
        Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR.
        Blood. 2012; 15: 2552-2555
        • Oliveira J.B.
        • Fleisher T.A.
        Laboratory evaluation of primary immunodeficiencies.
        J Allergy Clin Immunol. 2010; 125: S297-S305
        • Lee W.-I.
        • Torgerson T.R.
        • Schumacher M.J.
        • et al.
        Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome.
        Blood. 2005; 105: 1881-1890
        • Fleisher T.A.
        The autoimmune lymphoproliferative syndrome: an experiment of nature involving lymphocyte apoptosis.
        Immunol Res. 2008; 40: 87-92
        • Hanlon M.G.
        • Gacis M.L.
        • Kakakios A.M.
        • et al.
        Investigation of suspected deficient Fas-mediated apoptosis in a father and son.
        Cytometry. 2001; 43: 195-198
        • Simon K.L.
        • Anderson S.M.
        • Garabedian E.K.
        • et al.
        Molecular and phenotypic abnormalities of B lymphocytes in patients with Wiskott-Aldrich syndrome.
        J Allergy Clin Immunol. 2014; 133: 896-899
        • Castiello M.C.
        • Bosticardo M.
        • Pala F.
        • et al.
        Wiskott-Aldrich Syndrome protein deficiency perturbs the homeostasis of B cell compartment in humans.
        J Autoimmun. 2014; 50: 42-50
        • Yamada M.
        • Ohtsu M.
        • Kobayashi I.
        • et al.
        Flow cytometric analysis of Wiskott-Aldrich syndrome (WAS) protein in lymphocytes from WAS patients and their familial carriers.
        Blood. 1999; 93: 756-757
        • Park J.Y.
        • Shcherbina A.
        • Rosen F.S.
        • et al.
        Phenotypic perturbation of B cells in the Wiskott-Aldrich syndrome.
        Clin Exp Immunol. 2005; 139: 297-305
        • Yamada M.
        • Ariga T.
        • Kawamura N.
        • et al.
        Determination of carrier status for the Wiskott-Aldrich syndrome by flow cytometric analysis of Wiskott-Aldrich syndrome protein expression in peripheral blood mononuclear cells.
        J Immunol. 2000; 165: 1119-1122
        • Schubert R.
        • Reichenbach J.
        • Zielen S.
        Deficiencies in CD4+ and CD8+ T cell subsets in ataxia telangiectasia.
        Clin Exp Immunol. 2002; 129: 125-132
        • Porcedda P.
        • Turinetto V.
        • Brusco A.
        • et al.
        A rapid flow cytometry test based on histone H2AX phosphorylation for the sensitive and specific diagnosis of ataxia telangiectasia.
        Cytometry A. 2008; 73: 508-516
        • Chrzanowska K.H.
        • Gregorek H.
        • Dembowska-Bagińska B.
        • et al.
        Nijmegen breakage syndrome (NBS).
        Orphanet J Rare Dis. 2012; 28;7: 13
        • Piatosa B.
        • van der Burg M.
        • Siewiera K.
        • et al.
        The defect in humoral immunity in patients with Nijmegen breakage syndrome is explained by defects in peripheral B lymphocyte maturation.
        Cytometry A. 2012; 81: 835-842
        • van Vu Q.
        • Wada T.
        • Toma T.
        • et al.
        Clinical and immunophenotypic features of atypical complete DiGeorge syndrome.
        Pediatr Int. 2013; 55: 2-6
        • Dar N.
        • Gothelf D.
        • Korn D.
        • et al.
        Thymic and bone marrow output in individuals with 22q11.2 deletion syndrome.
        Pediatr Res. 2015; 77: 579-585
        • Ravkov E.
        • Slev P.
        • Heikal N.
        Thymic output: assessment of CD4+ recent thymic emigrants and T cell receptor excision circles in infants.
        Cytometry B Clin Cytom. 2017; 92: 249-257
        • Lima K.
        • Abrahamsen T.G.
        • Foelling I.
        • et al.
        Low thymic output in the 22q11.2 deletion syndrome measured by CCR9+CD45RA+ T cell counts and T cell receptor rearrangement excision circles.
        Clin Exp Immunol. 2010; 161: 98-107
        • Torgerson T.R.
        • Ochs H.D.
        Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells.
        J Allergy Clin Immunol. 2007; 120: 744-750
        • Nichols K.E.
        • Ma C.S.
        • Cannons J.L.
        • et al.
        Molecular and cellular pathogenesis of X-linked lymphoproliferative disease.
        Immunol Rev. 2005; 203: 180-199
        • Rigaud S.
        • Fondaneche M.-C.
        • Lambert N.
        • et al.
        XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome.
        Nature. 2006; 444: 110-114
        • Marsh R.A.
        • Bleesing J.J.
        • Filipovich A.H.
        Using flow cytometry to screen patients for X-linked lymphoproliferative disease due to SAP deficiency and XIAP deficiency.
        J Immunol Methods. 2010; 362: 1-9
        • Shinozaki K.
        • Kanegane H.
        • Matsukura H.
        • et al.
        Activation-dependent T cell expression of the X-linked lymphoproliferative disease gene product SLAM-associated protein and its assessment for patient detection.
        Int Immunol. 2002; 14: 1215-1223
        • Tabata Y.
        • Villanueva J.
        • Lee S.M.
        • et al.
        Rapid detection of intracellular SH2D1A protein in cytotoxic lymphocytes from patients with X-linked lymphoproliferative disease and their family members.
        Blood. 2005; 105: 3066-3071
        • Zhao M.
        • Kanegane H.
        • Kobayashi C.
        • et al.
        Early and rapid detection of X-linked lymphoproliferative syndrome with SH2D1A mutations by flow cytometry.
        Cytometry B Clin Cytom. 2011; 80: 8-13
        • Rosenzweig S.D.
        • Holland S.M.
        Phagocyte immunodeficiencies and their infections.
        J Allergy Clin Immunol. 2004; 113: 620-626
        • Filias A.
        • Theodorou G.L.
        • Mouzopoulou S.
        • et al.
        Phagocytic ability of neutrophils and monocytes in neonates.
        BMC Pediatr. 2011; 11: 29
        • Elloumi H.Z.
        • Holland S.M.
        Diagnostic assays for chronic granulomatous disease and other neutrophil disorders.
        Methods Mol Biol. 2014; 1124: 517-535
        • Finetti M.
        • Omenetti A.
        • Federici S.
        Chronic infantile neurological cutaneous and articular (CINCA) syndrome: a review.
        Orphanet J Rare Dis. 2016; 11: 167
        • Leone V.
        • Presani G.
        • Perticarari S.
        • et al.
        Chronic infantile neurological cutaneous articular syndrome: CD10 over-expression in neutrophils is a possible key to the pathogenesis of the disease.
        Eur J Pediatr. 2003; 162: 669-673
        • van Esch H.
        MECP2 duplication syndrome.
        Mol Syndromol. 2012; 2: 128-136
        • Yang T.
        • Ramocki M.B.
        • Neul J.L.
        • et al.
        Overexpression of methyl-CpG binding protein 2 impairs T(H)1 responses.
        Sci Transl Med. 2012; 4: 163ra158