Advertisement
Review Article| Volume 37, ISSUE 4, P945-964, December 2017

Applications of Mass Cytometry in Clinical Medicine

The Promise and Perils of Clinical CyTOF

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tanner S.D.
        • Baranov V.I.
        • Ornatsky O.I.
        • et al.
        An introduction to mass cytometry: fundamentals and applications.
        Cancer Immunol Immunother. 2013; 62: 955-965
        • Spitzer M.H.
        • Nolan G.P.
        Mass cytometry: single cells, many features.
        Cell. 2016; 165: 780-791
        • Bjornson Z.B.
        • Nolan G.P.
        • Fantl W.J.
        Single-cell mass cytometry for analysis of immune system functional states.
        Curr Opin Immunol. 2013; 25: 484-494
        • Di Palma S.
        • Bodenmiller B.
        Unraveling cell populations in tumors by single-cell mass cytometry.
        Curr Opin Biotechnol. 2015; 31: 122-129
        • Ornatsky O.I.
        • Lou X.
        • Nitz M.
        • et al.
        Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry.
        Anal Chem. 2008; 80: 2539-2547
        • Ornatsky O.
        • Baranov V.I.
        • Bandura D.R.
        • et al.
        Multiple cellular antigen detection by ICP-MS.
        J Immunol Methods. 2006; 308: 68-76
        • Behbehani G.K.
        • Thom C.
        • Zunder E.R.
        • et al.
        Transient partial permeabilization with saponin enables cellular barcoding prior to surface marker staining.
        Cytometry A. 2014; 85: 1011-1019
        • Bodenmiller B.
        • Zunder E.R.
        • Finck R.
        • et al.
        Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators.
        Nat Biotechnol. 2012; 30: 858-867
        • Zunder E.R.
        • Finck R.
        • Behbehani G.K.
        • et al.
        Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm.
        Nat Protoc. 2015; 10: 316-333
        • Behbehani G.K.
        • Samusik N.
        • Bjornson Z.B.
        • et al.
        Mass cytometric functional profiling of acute myeloid leukemia defines cell-cycle and immunophenotypic properties that correlate with known responses to therapy.
        Cancer Discov. 2015; 5: 988-1003
        • Stern A.D.
        • Rahman A.H.
        • Birtwistle M.R.
        Cell size assays for mass cytometry.
        Cytometry A. 2017; 91: 14-24
        • Behbehani G.K.
        • Bendall S.C.
        • Clutter M.R.
        • et al.
        Single-cell mass cytometry adapted to measurements of the cell cycle.
        Cytometry A. 2012; 81: 552-566
        • Fienberg H.G.
        • Simonds E.F.
        • Fantl W.J.
        • et al.
        A platinum-based covalent viability reagent for single-cell mass cytometry.
        Cytometry A. 2012; 81: 467-475
        • Edgar L.J.
        • Vellanki R.N.
        • Halupa A.
        • et al.
        Identification of hypoxic cells using an organotellurium tag compatible with mass cytometry.
        Angew Chem Int Ed Engl. 2014; 53: 11473-11477
        • Finck R.
        • Simonds E.F.
        • Jager A.
        • et al.
        Normalization of mass cytometry data with bead standards.
        Cytometry A. 2013; 83: 483-494
        • Amir el A.D.
        • Davis K.L.
        • Tadmor M.D.
        • et al.
        viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.
        Nat Biotechnol. 2013; 31: 545-552
        • Ferrell Jr., P.B.
        • Diggins K.E.
        • Polikowsky H.G.
        • et al.
        High-dimensional analysis of acute myeloid leukemia reveals phenotypic changes in persistent cells during induction therapy.
        PLoS One. 2016; 11: e0153207
        • Fisher D.A.
        • Malkova O.
        • Engle E.K.
        • et al.
        Mass cytometry analysis reveals hyperactive NF Kappa B signaling in myelofibrosis and secondary acute myeloid leukemia.
        Leukemia. 2017; ([Epub ahead of print])
        • Levine J.H.
        • Simonds E.F.
        • Bendall S.C.
        • et al.
        Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis.
        Cell. 2015; 162: 184-197
        • Renneville A.
        • Abdelali R.B.
        • Chevret S.
        • et al.
        Clinical impact of gene mutations and lesions detected by SNP-array karyotyping in acute myeloid leukemia patients in the context of gemtuzumab ozogamicin treatment: results of the ALFA-0701 trial.
        Oncotarget. 2014; 5: 916-932
        • Saenz D.T.
        • Fiskus W.
        • Qian Y.
        • et al.
        Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells.
        Leukemia. 2017; ([Epub ahead of print])
        • Strauss-Albee D.M.
        • Fukuyama J.
        • Liang E.C.
        • et al.
        Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility.
        Sci Transl Med. 2015; 7: 297ra115
        • Newell E.W.
        • Sigal N.
        • Nair N.
        • et al.
        Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization.
        Nat Biotechnol. 2013; 31: 623-629
        • Rao D.A.
        • Gurish M.F.
        • Marshall J.L.
        • et al.
        Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis.
        Nature. 2017; 542: 110-114
        • O'Gorman W.E.
        • Hsieh E.W.
        • Savig E.S.
        • et al.
        Single-cell systems-level analysis of human Toll-like receptor activation defines a chemokine signature in patients with systemic lupus erythematosus.
        J Allergy Clin Immunol. 2015; 136: 1326-1336
        • Gaudilliere B.
        • Fragiadakis G.K.
        • Bruggner R.V.
        • et al.
        Clinical recovery from surgery correlates with single-cell immune signatures.
        Sci Transl Med. 2014; 6: 255ra131
        • Spitzer M.H.
        • Carmi Y.
        • Reticker-Flynn N.E.
        • et al.
        Systemic immunity is required for effective cancer immunotherapy.
        Cell. 2017; 168: 487-502.e15
        • Wistuba-Hamprecht K.
        • Martens A.
        • Weide B.
        • et al.
        Establishing high dimensional immune signatures from peripheral blood via mass cytometry in a discovery cohort of stage IV melanoma patients.
        J Immunol. 2017; 198: 927
        • Romee R.
        • Rosario M.
        • Berrien-Elliott M.M.
        • et al.
        Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia.
        Sci Transl Med. 2016; 8: 357ra123
      1. Kotecha N, Krutzik PO, Irish JM, Web-based analysis and publication of flow cytometry experiments. Current Protocols in Cytometry. 53:10.17:10.17.1–10.17.24.

        • Aghaeepour N.
        • Chattopadhyay P.
        • Chikina M.
        • et al.
        A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes.
        Cytometry A. 2016; 89: 16-21
        • Diggins K.E.
        • Greenplate A.R.
        • Leelatian N.
        • et al.
        Characterizing cell subsets using marker enrichment modeling.
        Nat Methods. 2017; 14: 275-278
        • Samusik N.
        • Good Z.
        • Spitzer M.H.
        • et al.
        Automated mapping of phenotype space with single-cell data.
        Nat Methods. 2016; 13: 493-496
        • Spitzer M.H.
        • Gherardini P.F.
        • Fragiadakis G.K.
        • et al.
        IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system.
        Science. 2015; 349: 1259425
        • Bendall S.C.
        • Simonds E.F.
        • Qiu P.
        • et al.
        Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum.
        Science. 2011; 332: 687-696
        • Qiu P.
        • Simonds E.F.
        • Bendall S.C.
        • et al.
        Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE.
        Nat Biotechnol. 2011; 29: 886-891
        • Gibbs K.D.
        • Jager A.
        • Crespo O.
        • et al.
        Decoupling of tumor-initiating activity from stable immunophenotype in HoxA9-Meis1 driven AML.
        Cell Stem Cell. 2012; 10: 210-217
        • Sachs Z.
        • LaRue R.S.
        • Nguyen H.T.
        • et al.
        NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia.
        Blood. 2014; 124: 3274
        • Selimoglu-Buet D.
        • Wagner-Ballon O.
        • Saada V.
        • et al.
        Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia.
        Blood. 2015; 125: 3618
        • Kordasti S.
        • Costantini B.
        • Seidl T.
        • et al.
        Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment.
        Blood. 2016; 128: 1193
        • Kim B.-S.
        • Nishikii H.
        • Baker J.
        • et al.
        Treatment with agonistic DR3 antibody results in expansion of donor Tregs and reduced graft-versus-host disease.
        Blood. 2015; 126: 546
        • van der Maaten L.
        • Hinton G.
        Visualizing data using t-SNE.
        J Mach Learn Res. 2008; 9: 85
        • Ribas A.
        • Shin D.S.
        • Zaretsky J.
        • et al.
        PD-1 blockade expands intratumoral memory T cells.
        Cancer Immunol Res. 2016; 4: 194-203
        • DiGiuseppe J.A.
        • Tadmor M.D.
        • Pe'er D.
        Detection of minimal residual disease in B lymphoblastic leukemia using viSNE.
        Cytometry B Clin Cytom. 2015; 88: 294-304
        • Bruggner R.V.
        • Bodenmiller B.
        • Dill D.L.
        • et al.
        Automated identification of stratifying signatures in cellular subpopulations.
        Proc Natl Acad Sci U S A. 2014; 111: E2770-E2777