Advertisement
Review Article| Volume 37, ISSUE 4, P879-893, December 2017

Flow Cytometry in Pediatric Hematopoietic Malignancies

  • Jie Li
    Affiliations
    Department of Pathology and Laboratory Medicine, Division of Hematopathology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA

    Department of Pathology and Laboratory Medicine, Hospital of University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
    Search for articles by this author
  • Gerald Wertheim
    Affiliations
    Department of Pathology and Laboratory Medicine, Division of Hematopathology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA

    Department of Pathology and Laboratory Medicine, Hospital of University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
    Search for articles by this author
  • Michele Paessler
    Affiliations
    Department of Pathology and Laboratory Medicine, Division of Hematopathology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
    Search for articles by this author
  • Vinodh Pillai
    Correspondence
    Corresponding author. Department of Pathology and Laboratory Medicine, 34th and Civic Center Boulevard, Philadelphia, PA 19104.
    Affiliations
    Department of Pathology and Laboratory Medicine, Division of Hematopathology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA

    Department of Pathology and Laboratory Medicine, Hospital of University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
    Search for articles by this author
Published:September 26, 2017DOI:https://doi.org/10.1016/j.cll.2017.07.009

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sevilla D.W.
        • Colovai A.I.
        • Emmons F.N.
        • et al.
        Hematogones: a review and update.
        Leuk Lymphoma. 2010; 51: 10-19
        • LeBien T.W.
        • Tedder T.F.
        B lymphocytes: how they develop and function.
        Blood. 2008; 112: 1570-1580
        • McKenna R.W.
        • Washington L.T.
        • Aquino D.B.
        • et al.
        Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry.
        Blood. 2001; 98: 2498-2507
        • Kroft S.H.
        Role of flow cytometry in pediatric hematopathology.
        Am J Clin Pathol. 2004; 122: S19-S32
        • Wood B.L.
        Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry.
        Cytometry B Clin Cytom. 2016; 90: 47-53
        • Gandemer V.
        • Aubry M.
        • Roussel M.
        • et al.
        CD9 expression can be used to predict childhood TEL/AML1-positive acute lymphoblastic leukemia: proposal for an accelerated diagnostic flowchart.
        Leuk Res. 2010; 34: 430-437
        • Schwartz S.
        • Rieder H.
        • Schläger B.
        • et al.
        Expression of the human homologue of rat NG2 in adult acute lymphoblastic leukemia: close association with MLL rearrangement and a CD10(-)/CD24(-)/CD65s(+)/CD15(+) B-cell phenotype.
        Leukemia. 2003; 17: 1589-1595
        • Borowitz M.J.
        • Hunger S.P.
        • Carroll A.J.
        • et al.
        Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study.
        Blood. 1993; 82: 1086-1091
        • Fuda F.S.
        • Karandikar N.J.
        • Chen W.
        Significant CD5 expression on normal stage 3 hematogones and mature B lymphocytes in bone marrow.
        Am J Clin Pathol. 2009; 132: 733-737
        • Onciu M.
        • Lorsbach R.B.
        • Henry E.C.
        • et al.
        Terminal deoxynucleotidyl transferase-positive lymphoid cells in reactive lymph nodes from children with malignant tumors: incidence, distribution pattern, and immunophenotype in 26 patients.
        Am J Clin Pathol. 2002; 118: 248-254
        • Chantepie S.P.
        • Cornet E.
        • Salaun V.
        • et al.
        Hematogones: an overview.
        Leuk Res. 2013; 37: 1404-1411
        • Rimsza L.M.
        • Viswanatha D.S.
        • Winter S.S.
        • et al.
        The presence of CD34+ cell clusters predicts impending relapse in children with acute lymphoblastic leukemia receiving maintenance chemotherapy.
        Am J Clin Pathol. 1998; 110: 313-320
        • Jabbour E.
        • O'Brien S.
        • Ravandi F.
        • et al.
        Monoclonal antibodies in acute lymphoblastic leukemia.
        Blood. 2015; 125: 4010-4016
        • Maude S.L.
        • Frey N.
        • Shaw P.A.
        • et al.
        Chimeric antigen receptor T cells for sustained remissions in leukemia.
        N Engl J Med. 2014; 371: 1507-1517
        • Cherian S.
        • Miller V.
        • McCullouch V.
        • et al.
        A novel flow cytometric assay for detection of residual disease in patients with B-lymphoblastic leukemia/lymphoma post anti-CD19 therapy.
        Cytometry B Clin Cytom. 2016; https://doi.org/10.1002/cyto.b.21482
        • Hussein S.
        • Pinkney K.
        • Jobanputra V.
        • et al.
        CD19-negative B-lymphoblastic leukemia associated with hypercalcemia, lytic bone lesions and aleukemic presentation.
        Leuk Lymphoma. 2015; 56: 1533-1537
        • Turtle C.J.
        • Hanafi L.A.
        • Berger C.
        • et al.
        CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients.
        J Clin Invest. 2016; 126: 2123-2138
        • Sotillo E.
        • Barrett D.M.
        • Black K.L.
        • et al.
        Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy.
        Cancer Discov. 2015; 5: 1282-1295
        • Plllai V.
        • Sotillo E.
        • Harrington C.
        • et al.
        Changes in CD19 localization after CD19-directed chimeric antigen receptor T cell therapy for primary mediastinal large B cell lymphoma.
        British Journal of Haematology. 2015; 171: 176
        • Evans A.G.
        • Rothberg P.G.
        • Burack W.R.
        • et al.
        Evolution to plasmablastic lymphoma evades CD19-directed chimeric antigen receptor T cells.
        Br J Haematol. 2015; https://doi.org/10.1111/bjh.13562
        • Gardner R.
        • Wu D.
        • Cherian S.
        • et al.
        Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy.
        Blood. 2016; 127: 2406-2410
        • Rayes A.
        • McMasters R.L.
        • O'Brien M.M.
        Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy.
        Pediatr Blood Cancer. 2016; 63: 1113-1115
        • Shah N.N.
        • Stevenson M.S.
        • Yuan C.M.
        • et al.
        Characterization of CD22 expression in acute lymphoblastic leukemia.
        Pediatr Blood Cancer. 2015; 62: 964-969
        • Gamis A.S.
        • Alonzo T.A.
        • Gerbing R.B.
        • et al.
        Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates: a report from the Children's Oncology Group Study A2971.
        Blood. 2011; 118 ([quiz: 6996]): 6752-6759
        • Karandikar N.J.
        • Aquino D.B.
        • McKenna R.W.
        • et al.
        Transient myeloproliferative disorder and acute myeloid leukemia in Down syndrome. An immunophenotypic analysis.
        Am J Clin Pathol. 2001; 116: 204-210
        • Langebrake C.
        • Creutzig U.
        • Reinhardt D.
        Immunophenotype of Down syndrome acute myeloid leukemia and transient myeloproliferative disease differs significantly from other diseases with morphologically identical or similar blasts.
        Klin Padiatr. 2005; 217: 126-134
        • Hitzler J.K.
        • Cheung J.
        • Li Y.
        • et al.
        GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome.
        Blood. 2003; 101: 4301-4304
        • Wang L.
        • Peters J.M.
        • Fuda F.
        • et al.
        Acute megakaryoblastic leukemia associated with trisomy 21 demonstrates a distinct immunophenotype.
        Cytometry B Clin Cytom. 2015; 88: 244-252
        • Harrington A.M.
        • Schelling L.A.
        • Ordobazari A.
        • et al.
        Immunophenotypes of chronic myelomonocytic leukemia (CMML) subtypes by flow cytometry: a comparison of CMML-1 vs CMML-2, myeloproliferative vs dysplastic, De Novo vs therapy-related, and CMML-specific cytogenetic risk subtypes.
        Am J Clin Pathol. 2016; 146: 170-181
        • Oliveira A.F.
        • Tansini A.
        • Vidal D.O.
        • et al.
        Characteristics of the phenotypic abnormalities of bone marrow cells in childhood myelodysplastic syndromes and juvenile myelomonocytic leukemia.
        Pediatr Blood Cancer. 2017; 64https://doi.org/10.1002/pbc.26285
        • Xu Y.
        • McKenna R.W.
        • Karandikar N.J.
        • et al.
        Flow cytometric analysis of monocytes as a tool for distinguishing chronic myelomonocytic leukemia from reactive monocytosis.
        Am J Clin Pathol. 2005; 124: 799-806
        • Selimoglu-Buet D.
        • Wagner-Ballon O.
        • Saada V.
        • et al.
        Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia.
        Blood. 2015; 125: 3618-3626
        • Hirabayashi S.
        • Flotho C.
        • Moetter J.
        • et al.
        Spliceosomal gene aberrations are rare, coexist with oncogenic mutations, and are unlikely to exert a driver effect in childhood MDS and JMML.
        Blood. 2012; 119: e96-e99
        • Stieglitz E.
        • Taylor-Weiner A.N.
        • Chang T.Y.
        • et al.
        The genomic landscape of juvenile myelomonocytic leukemia.
        Nat Genet. 2015; 47: 1326-1333
        • Loken M.R.
        • Alonzo T.A.
        • Pardo L.
        • et al.
        Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children's Oncology Group.
        Blood. 2012; 120: 1581-1588
        • Swerdlow S.H.
        • Campo E.
        • Harris N.L.
        • et al.
        WHO classification of tumours of haematopoietic and lymphoid tissues.
        4th edition. IARC, Lyons (France)2008
        • Jain N.
        • Lamb A.V.
        • O'Brien S.
        • et al.
        Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype.
        Blood. 2016; 127: 1863-1869
        • Allen A.
        • Sireci A.
        • Colovai A.
        • et al.
        Early T-cell precursor leukemia/lymphoma in adults and children.
        Leuk Res. 2013; 37: 1027-1034
        • Li S.
        • Juco J.
        • Mann K.P.
        • et al.
        Flow cytometry in the differential diagnosis of lymphocyte-rich thymoma from precursor T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma.
        Am J Clin Pathol. 2004; 121: 268-274
        • Scott K.J.
        • Schroeder A.A.
        • Greinwald Jr., J.H.
        Ectopic cervical thymus: an uncommon diagnosis in the evaluation of pediatric neck masses.
        Arch Otolaryngol Head Neck Surg. 2002; 128: 714-717