Advertisement
Review Article| Volume 37, ISSUE 4, P771-785, December 2017

B Lymphoblastic Leukemia Minimal Residual Disease Assessment by Flow Cytometric Analysis

Published:August 30, 2017DOI:https://doi.org/10.1016/j.cll.2017.07.005

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rawstron A.C.
        • Böttcher S.
        • Letestu R.
        • et al.
        Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL.
        Leukemia. 2013; 27: 142-149
        • Böttcher S.
        • Ritgen M.
        • Fischer K.
        • et al.
        Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial.
        J Clin Oncol. 2012; 30: 980-988
        • Strati P.
        • Keating M.J.
        • Brien S.M.O.
        • et al.
        Eradication of bone marrow minimal residual disease may prompt early treatment discontinuation in CLL.
        Blood. 2014; 123: 3727-3732
        • Loken M.R.
        • Alonzo T.A.
        • Pardo L.
        • et al.
        Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children’s Oncology Group.
        Blood. 2012; 120: 1581-1588
        • Hourigan C.S.
        • Karp J.E.
        Minimal residual disease in acute myeloid leukaemia.
        Nat Rev Clin Oncol. 2013; 10: 460-471
        • Paiva B.
        • Cedena M.-T.
        • Puig N.
        • et al.
        Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients.
        Blood. 2016; 127: 3165-3174
        • Rawstron A.C.
        • Paiva B.
        • Stetler-Stevenson M.
        Assessment of minimal residual disease in myeloma and the need for a consensus approach.
        Cytometry B Clin Cytom. 2016; 90: 21-25
        • Teachey D.T.
        • Hunger S.P.
        Predicting relapse risk in childhood acute lymphoblastic leukaemia.
        Br J Haematol. 2013; 162: 606-620
        • Wood B.L.
        Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry.
        Cytometry B Clin Cytom. 2016; 90: 47-53
        • Chen X.
        • Wood B.L.
        Monitoring minimal residual disease in acute leukemia: technical challenges and interpretive complexities.
        Blood Rev. 2017; 31: 63-75
        • Weir E.G.
        • Cowan K.
        • LeBeau P.
        • et al.
        A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection.
        Leukemia. 1999; 13 (Available at:) (Accessed May 6, 2014): 558-567
        • McKenna R.W.
        • Washington L.T.
        • Aquino D.B.
        • et al.
        Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry.
        Blood. 2001; 98 (Available at:): 2498-2507
        • McKenna R.W.
        • Asplund S.L.
        • Kroft S.H.
        Immunophenotypic analysis of hematogones (B-lymphocyte precursors) and neoplastic lymphoblasts by 4-color flow cytometry.
        Leuk Lymphoma. 2004; 45 (Available at:) (Accessed May 6, 2014): 277-285
        • Kroft S.H.
        • Asplund S.L.
        • McKenna R.W.
        • et al.
        Haematogones in the peripheral blood of adults: a four-colour flow cytometry study of 102 patients.
        Br J Haematol. 2004; 126: 209-212
        • Seegmiller A.C.
        • Kroft S.H.
        • Karandikar N.J.
        • et al.
        Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia.
        Am J Clin Pathol. 2009; 132: 940-949
        • Shaver A.C.
        • Greig B.W.
        • Mosse C.A.
        • et al.
        B-ALL minimal residual disease flow cytometry: an application of a novel method for optimization of a single-tube model.
        Am J Clin Pathol. 2015; 143: 716-724
        • Leitenberg D.
        • Rappeport J.M.
        • Smith B.R.
        B-cell precursor bone marrow reconstitution after bone marrow transplantation.
        Am J Clin Pathol. 1994; 102 (Available at:): 231-236
        • van Wering E.R.
        • van der Linden-Schrever B.E.
        • Szczepański T.
        • et al.
        Regenerating normal B-cell precursors during and after treatment of acute lymphoblastic leukaemia: implications for monitoring of minimal residual disease.
        Br J Haematol. 2000; 110 (Available at:): 139-146
        • Borowitz M.J.
        • Pullen D.J.
        • Winick N.
        • et al.
        Comparison of diagnostic and relapse flow cytometry phenotypes in childhood acute lymphoblastic leukemia: implications for residual disease detection: a report from the children’s oncology group.
        Cytometry B Clin Cytom. 2005; 68: 18-24
        • Gaipa G.
        • Basso G.
        • Maglia O.
        • et al.
        Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection.
        Leukemia. 2005; 19: 49-56
        • Chen W.
        • Karandikar N.J.
        • McKenna R.W.
        • et al.
        Stability of leukemia-associated immunophenotypes in precursor B-lymphoblastic leukemia/lymphoma: a single institution experience.
        Am J Clin Pathol. 2007; 127: 39-46
        • Gaipa G.
        • Basso G.
        • Aliprandi S.
        • et al.
        Prednisone induces immunophenotypic modulation of CD10 and CD34 in nonapoptotic B-cell precursor acute lymphoblastic leukemia cells.
        Cytometry B Clin Cytom. 2008; 74: 150-155
        • Dworzak M.N.
        • Gaipa G.
        • Schumich A.
        • et al.
        Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study Group.
        Cytometry B Clin Cytom. 2010; 78: 147-153
        • Wood B.L.
        Flow cytometric monitoring of residual disease in acute leukemia.
        Methods Mol Biol. 2013; 999: 123-136
        • Rawstron A.C.
        • Fazi C.
        • Agathangelidis A.
        • et al.
        A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study.
        Leukemia. 2016; 30: 929-936
        • Theunissen P.
        • Mejstrikova E.
        • Sedek L.
        • et al.
        Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia.
        Blood. 2017; 129: 347-357
        • Borowitz M.J.
        • Pullen D.J.
        • Shuster J.J.
        • et al.
        Minimal residual disease detection in childhood precursor-B-cell acute lymphoblastic leukemia: relation to other risk factors. A Children’s Oncology Group study.
        Leukemia. 2003; 17: 1566-1572
        • Gaipa G.
        • Basso G.
        • Biondi A.
        • et al.
        Detection of minimal residual disease in pediatric acute lymphoblastic leukemia.
        Cytometry B Clin Cytom. 2013; 84: 359-369
        • Muzzafar T.
        • Medeiros L.J.
        • Wang S.A.
        • et al.
        Aberrant underexpression of CD81 in precursor B-cell acute lymphoblastic leukemia: utility in detection of minimal residual disease by flow cytometry.
        Am J Clin Pathol. 2009; 132: 692-698
        • Orfao A.
        • Ciudad J.
        • Lopez-Berges M.C.
        • et al.
        Acute lymphoblastic leukemia (ALL): detection of minimal residual disease (MRD) at flow cytometry.
        Leuk Lymphoma. 1994; 13: 87-90
        • Coustan-Smith E.
        • Behm F.G.
        • Sanchez J.
        • et al.
        Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia.
        Lancet. 1998; 351: 550-554
        • Coustan-Smith E.
        • Sancho J.
        • Hancock M.L.
        • et al.
        Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia.
        Blood. 2002; 100: 2399-2402
        • Dworzak M.N.
        • Fröschl G.
        • Printz D.
        • et al.
        Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia.
        Blood. 2002; 99 (Available at:): 1952-1958
        • Björklund E.
        • Mazur J.
        • Söderhäll S.
        • et al.
        Flow cytometric follow-up of minimal residual disease in bone marrow gives prognostic information in children with acute lymphoblastic leukemia.
        Leukemia. 2003; 17: 138-148
        • Coustan-Smith E.
        • Sancho J.
        • Behm F.G.
        • et al.
        Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia.
        Blood. 2002; 100: 52-58
        • Borowitz M.J.
        • Devidas M.
        • Hunger S.P.
        • et al.
        Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study.
        Blood. 2008; 111: 5477-5485
        • Bowman W.P.
        • Larsen E.L.
        • Devidas M.
        • et al.
        Augmented therapy improves outcome for pediatric high risk acute lymphocytic leukemia: results of Children’s Oncology Group trial P9906.
        Pediatr Blood Cancer. 2011; 57: 569-577
        • Borowitz M.J.
        • Wood B.L.
        • Devidas M.
        • et al.
        Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children’s Oncology Group study AALL0232.
        Blood. 2015; 126: 964-971
        • Coustan-Smith E.
        • Gajjar A.
        • Hijiya N.
        • et al.
        Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse.
        Leukemia. 2004; 18: 499-504
        • Raetz E.A.
        • Borowitz M.J.
        • Devidas M.
        • et al.
        Reinduction platform for children with first marrow relapse of acute lymphoblastic leukemia: a Children’s Oncology Group Study.
        J Clin Oncol. 2008; 26: 3971-3978
        • Pui C.-H.
        • Pei D.
        • Coustan-Smith E.
        • et al.
        Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study.
        Lancet Oncol. 2015; 16: 465-474
        • Mullighan C.G.
        • Jeha S.
        • Pei D.
        • et al.
        Outcome of children with hypodiploid ALL treated with risk-directed therapy based on MRD levels.
        Blood. 2015; 126: 2896-2899
        • Leung W.
        • Campana D.
        • Yang J.
        • et al.
        High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia.
        Blood. 2011; 118: 223-230
        • Zhao X.-S.
        • Liu Y.-R.
        • Zhu H.-H.
        • et al.
        Monitoring MRD with flow cytometry: an effective method to predict relapse for ALL patients after allogeneic hematopoietic stem cell transplantation.
        Ann Hematol. 2012; 91: 183-192
        • Leung W.
        • Pui C.-H.
        • Coustan-Smith E.
        • et al.
        Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia.
        Blood. 2012; 120: 468-472
        • Ribera J.-M.
        • Oriol A.
        • Morgades M.
        • et al.
        Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry: final results of the PETHEMA.
        J Clin Oncol. 2014; 32: 1595-1604
        • Keeney M.
        • Wood B.L.
        • Hedley B.
        • et al.
        Experience with MRD testing in B-ALL by flow cytometry does not prevent interpretative discordance.
        Blood. 2016; 128: 2907
        • Maude S.L.
        • Frey N.
        • Shaw P.A.
        • et al.
        Chimeric antigen receptor T cells for sustained remissions in leukemia.
        N Engl J Med. 2014; 371: 1507-1517
        • Maude S.L.
        • Teachey D.T.
        • Porter D.L.
        • et al.
        CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia.
        Blood. 2015; 125: 4017-4023
        • Topp M.S.
        • Gökbuget N.
        • Stein A.S.
        • et al.
        Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study.
        Lancet Oncol. 2015; 16: 57-66
        • Zugmaier G.
        • Gökbuget N.
        • Klinger M.
        • et al.
        Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment.
        Blood. 2015; 126: 2578-2584
        • Kantarjian H.M.
        • Stein A.S.
        • Bargou R.C.
        • et al.
        Blinatumomab treatment of older adults with relapsed/refractory B-precursor acute lymphoblastic leukemia: results from 2 phase 2 studies.
        Cancer. 2016; 122: 2178-2185
        • Lee D.W.
        • Kochenderfer J.N.
        • Stetler-Stevenson M.
        • et al.
        T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial.
        Lancet. 2015; 385: 517-528
        • Davila M.L.
        • Riviere I.
        • Wang X.
        • et al.
        Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia.
        Sci Transl Med. 2014; 6: 224ra25
        • Topp M.S.
        • Gökbuget N.
        • Zugmaier G.
        • et al.
        Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia.
        J Clin Oncol. 2014; 32: 4134-4140
        • Cherian S.
        • Miller V.
        • McCullouch V.
        • et al.
        A novel flow cytometric assay for detection of residual disease in patients with B-lymphoblastic leukemia/lymphoma post anti-CD19 therapy.
        Cytometry B Clin Cytom. 2016; https://doi.org/10.1002/cyto.b.21482