Advertisement
Review Article| Volume 37, ISSUE 4, P753-769, December 2017

Acute Myeloid Leukemia Immunophenotyping by Flow Cytometric Analysis

Published:August 30, 2017DOI:https://doi.org/10.1016/j.cll.2017.07.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Swerdlow S.H.
        • Campo E.
        • Harris N.L.
        • et al.
        WHO classification of tumours of haematopoietic and lymphoid tissues.
        4th edition. IARC, Lyon (France)2008
        • Cherian S.
        • Wood B.L.
        Flow cytometry in evaluation of hematopoietic neoplasms: a case based approach.
        CAP Press, Northfield (IL)2012
        • Wood B.
        Multicolor immunophenotyping: human immune system hematopoiesis.
        Methods Cell Biol. 2004; 75: 559-576
        • Wood B.L.
        Myeloid malignancies: myelodysplastic syndromes, myeloproliferative disorders, and acute myeloid leukemia.
        Clin Lab Med. 2007; 27 (vii): 551-575
        • Kussick S.J.
        • Wood B.L.
        Four-color flow cytometry identifies virtually all cytogenetically abnormal bone marrow samples in the workup of non-CML myeloproliferative disorders.
        Am J Clin Pathol. 2003; 120: 854-865
        • Borowitz M.J.
        • Guenther K.L.
        • Shults K.E.
        • et al.
        Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis.
        Am J Clin Pathol. 1993; 100: 534-540
        • Stelzer G.T.
        • Shults K.E.
        • Loken M.R.
        CD45 gating for routine flow cytometric analysis of human bone marrow specimens.
        Ann N Y Acad Sci. 1993; 677: 265-280
        • Wood B.L.
        • Arroz M.
        • Barnett D.
        • et al.
        2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia.
        Cytometry B Clin Cytom. 2007; 72: S14-S22
        • Yang D.T.
        • Greenwood J.H.
        • Hartung L.
        • et al.
        Flow cytometric analysis of different CD14 epitopes can help identify immature monocytic populations.
        Am J Clin Pathol. 2005; 124: 930-936
        • Kaleem Z.
        • Crawford E.
        • Pathan M.H.
        • et al.
        Flow cytometric analysis of acute leukemias. Diagnostic utility and critical analysis of data.
        Arch Pathol Lab Med. 2003; 127: 42-48
        • Khalidi H.S.
        • Medeiros L.J.
        • Chang K.L.
        • et al.
        The immunophenotype of adult acute myeloid leukemia: high frequency of lymphoid antigen expression and comparison of immunophenotype, French-American-British classification, and karyotypic abnormalities.
        Am J Clin Pathol. 1998; 109: 211-220
        • Zheng J.
        • Wang X.
        • Hu Y.
        • et al.
        A correlation study of immunophenotypic, cytogenetic, and clinical features of 180 AML patients in China.
        Cytometry B Clin Cytom. 2008; 74: 25-29
        • Loken M.R.
        • Shah V.O.
        • Dattilio K.L.
        • et al.
        Flow cytometric analysis of human bone marrow: I. Normal erythroid development.
        Blood. 1987; 69: 255-263
        • Koike T.
        • Aoki S.
        • Maruyama S.
        • et al.
        Cell surface phenotyping of megakaryoblasts.
        Blood. 1987; 69: 957-960
        • San Miguel J.F.
        • Gonzalez M.
        • Canizo M.C.
        • et al.
        Leukemias with megakaryoblastic involvement: clinical, hematologic, and immunologic characteristics.
        Blood. 1988; 72: 402-407
        • Kafer G.
        • Willer A.
        • Ludwig W.
        • et al.
        Intracellular expression of CD61 precedes surface expression.
        Ann Hematol. 1999; 78: 472-474
        • Betz S.A.
        • Foucar K.
        • Head D.R.
        • et al.
        False-positive flow cytometric platelet glycoprotein IIb/IIIa expression in myeloid leukemias secondary to platelet adherence to blasts.
        Blood. 1992; 79: 2399-2403
        • Arber D.A.
        • Orazi A.
        • Hasserjian R.
        • et al.
        The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.
        Blood. 2016; 127: 2391-2405
        • Swerdlow S.H.
        • Campo E.
        • Pileri S.A.
        • et al.
        The 2016 revision of the World Health Organization classification of lymphoid neoplasms.
        Blood. 2016; 127: 2375-2390
        • De J.
        • Zanjani R.
        • Hibbard M.
        • et al.
        Immunophenotypic profile predictive of KIT activating mutations in AML1-ETO leukemia.
        Am J Clin Pathol. 2007; 128: 550-557
        • Khoury H.
        • Dalal B.I.
        • Nantel S.H.
        • et al.
        Correlation between karyotype and quantitative immunophenotype in acute myelogenous leukemia with t(8;21).
        Mod Pathol. 2004; 17: 1211-1216
        • Khoury H.
        • Dalal B.I.
        • Nevill T.J.
        • et al.
        Acute myelogenous leukemia with t(8;21)–identification of a specific immunophenotype.
        Leuk Lymphoma. 2003; 44: 1713-1718
        • Porwit-MacDonald A.
        • Janossy G.
        • Ivory K.
        • et al.
        Leukemia-associated changes identified by quantitative flow cytometry. IV. CD34 overexpression in acute myelogenous leukemia M2 with t(8;21).
        Blood. 1996; 87: 1162-1169
        • Kita K.
        • Nakase K.
        • Miwa H.
        • et al.
        Phenotypical characteristics of acute myelocytic leukemia associated with the t(8;21)(q22;q22) chromosomal abnormality: frequent expression of immature B-cell antigen CD19 together with stem cell antigen CD34.
        Blood. 1992; 80: 470-477
        • Chen S.W.
        • Li C.F.
        • Chuang S.S.
        • et al.
        Aberrant co-expression of CD19 and CD56 as surrogate markers of acute myeloid leukemias with t(8;21) in Taiwan.
        Int J Lab Hematol. 2008; 30: 133-138
        • Yang D.H.
        • Lee J.J.
        • Mun Y.C.
        • et al.
        Predictable prognostic factor of CD56 expression in patients with acute myeloid leukemia with t(8:21) after high dose cytarabine or allogeneic hematopoietic stem cell transplantation.
        Am J Hematol. 2007; 82: 1-5
        • Baer M.R.
        • Stewart C.C.
        • Lawrence D.
        • et al.
        Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22).
        Blood. 1997; 90: 1643-1648
        • Paschka P.
        • Marcucci G.
        • Ruppert A.S.
        • et al.
        Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study.
        J Clin Oncol. 2006; 24: 3904-3911
        • Shimada A.
        • Taki T.
        • Tabuchi K.
        • et al.
        KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group.
        Blood. 2006; 107: 1806-1809
        • Di Noto R.
        • Mirabelli P.
        • Del Vecchio L.
        Flow cytometry analysis of acute promyelocytic leukemia: the power of 'surface hematology'.
        Leukemia. 2007; 21: 4-8
        • Orfao A.
        • Chillon M.C.
        • Bortoluci A.M.
        • et al.
        The flow cytometric pattern of CD34, CD15 and CD13 expression in acute myeloblastic leukemia is highly characteristic of the presence of PML-RARalpha gene rearrangements.
        Haematologica. 1999; 84: 405-412
        • Albano F.
        • Mestice A.
        • Pannunzio A.
        • et al.
        The biological characteristics of CD34+ CD2+ adult acute promyelocytic leukemia and the CD34 CD2 hypergranular (M3) and microgranular (M3v) phenotypes.
        Haematologica. 2006; 91: 311-316
        • Biondi A.
        • Luciano A.
        • Bassan R.
        • et al.
        CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML gene breakpoint.
        Leukemia. 1995; 9: 1461-1466
        • Ferrara F.
        • Morabito F.
        • Martino B.
        • et al.
        CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy.
        J Clin Oncol. 2000; 18: 1295-1300
        • Ito S.
        • Ishida Y.
        • Oyake T.
        • et al.
        Clinical and biological significance of CD56 antigen expression in acute promyelocytic leukemia.
        Leuk Lymphoma. 2004; 45: 1783-1789
        • Murray C.K.
        • Estey E.
        • Paietta E.
        • et al.
        CD56 expression in acute promyelocytic leukemia: a possible indicator of poor treatment outcome?.
        J Clin Oncol. 1999; 17: 293-297
        • Masamoto Y.
        • Nannya Y.
        • Arai S.
        • et al.
        Evidence for basophilic differentiation of acute promyelocytic leukaemia cells during arsenic trioxide therapy.
        Br J Haematol. 2009; 144: 798-799
        • Oelschlaegel U.
        • Mohr B.
        • Schaich M.
        • et al.
        HLA-DRneg patients without acute promyelocytic leukemia show distinct immunophenotypic, genetic, molecular, and cytomorphologic characteristics compared to acute promyelocytic leukemia.
        Cytometry B Clin Cytom. 2009; 76: 321-327
        • Wetzler M.
        • McElwain B.K.
        • Stewart C.C.
        • et al.
        HLA-DR antigen-negative acute myeloid leukemia.
        Leukemia. 2003; 17: 707-715
        • Fenaux P.
        • Le Deley M.C.
        • Castaigne S.
        • et al.
        Effect of all transretinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. European APL 91 Group.
        Blood. 1993; 82: 3241-3249
        • Kanamaru A.
        • Takemoto Y.
        • Tanimoto M.
        • et al.
        All-trans retinoic acid for the treatment of newly diagnosed acute promyelocytic leukemia. Japan Adult Leukemia Study Group.
        Blood. 1995; 85: 1202-1206
        • Tallman M.S.
        • Andersen J.W.
        • Schiffer C.A.
        • et al.
        All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup protocol.
        Blood. 2002; 100: 4298-4302
        • Ferrari A.
        • Bussaglia E.
        • Ubeda J.
        • et al.
        Immunophenotype distinction between acute promyelocytic leukaemia and CD15- CD34- HLA-DR- acute myeloid leukaemia with nucleophosmin mutations.
        Hematol Oncol. 2012; 30: 109-114
        • Baer M.R.
        • Stewart C.C.
        • Lawrence D.
        • et al.
        Acute myeloid leukemia with 11q23 translocations: myelomonocytic immunophenotype by multiparameter flow cytometry.
        Leukemia. 1998; 12: 317-325
        • Munoz L.
        • Nomdedeu J.F.
        • Villamor N.
        • et al.
        Acute myeloid leukemia with MLL rearrangements: clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells.
        Leukemia. 2003; 17: 76-82
        • Creutzig U.
        • Harbott J.
        • Sperling C.
        • et al.
        Clinical significance of surface antigen expression in children with acute myeloid leukemia: results of study AML-BFM-87.
        Blood. 1995; 86: 3097-3108
        • Chang H.
        • Brandwein J.
        • Yi Q.L.
        • et al.
        Extramedullary infiltrates of AML are associated with CD56 expression, 11q23 abnormalities and inferior clinical outcome.
        Leuk Res. 2004; 28: 1007-1011
        • Mrozek K.
        • Marcucci G.
        • Paschka P.
        • et al.
        Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification?.
        Blood. 2007; 109: 431-448
        • Falini B.
        • Mecucci C.
        • Tiacci E.
        • et al.
        Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype.
        N Engl J Med. 2005; 352: 254-266
        • Falini B.
        • Nicoletti I.
        • Martelli M.F.
        • et al.
        Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features.
        Blood. 2007; 109: 874-885
        • Haferlach C.
        • Mecucci C.
        • Schnittger S.
        • et al.
        AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features.
        Blood. 2009; 114: 3024-3032
        • Kussick S.J.
        • Stirewalt D.L.
        • Yi H.S.
        • et al.
        A distinctive nuclear morphology in acute myeloid leukemia is strongly associated with loss of HLA-DR expression and FLT3 internal tandem duplication.
        Leukemia. 2004; 18: 1591-1598
        • Thalhammer-Scherrer R.
        • Mitterbauer G.
        • Simonitsch I.
        • et al.
        The immunophenotype of 325 adult acute leukemias: relationship to morphologic and molecular classification and proposal for a minimal screening program highly predictive for lineage discrimination.
        Am J Clin Pathol. 2002; 117: 380-389
        • Bene M.C.
        Biphenotypic, bilineal, ambiguous or mixed lineage: strange leukemias!.
        Haematologica. 2009; 94: 891-893
        • Owaidah T.M.
        • Al Beihany A.
        • Iqbal M.A.
        • et al.
        Cytogenetics, molecular and ultrastructural characteristics of biphenotypic acute leukemia identified by the EGIL scoring system.
        Leukemia. 2006; 20: 620-626
        • Weinberg O.K.
        • Arber D.A.
        Mixed-phenotype acute leukemia: historical overview and a new definition.
        Leukemia. 2010; 24: 1844-1851
        • Xu X.Q.
        • Wang J.M.
        • Lu S.Q.
        • et al.
        Clinical and biological characteristics of adult biphenotypic acute leukemia in comparison with that of acute myeloid leukemia and acute lymphoblastic leukemia: a case series of a Chinese population.
        Haematologica. 2009; 94: 919-927
        • Garnache-Ottou F.
        • Feuillard J.
        • Ferrand C.
        • et al.
        Extended diagnostic criteria for plasmacytoid dendritic cell leukaemia.
        Br J Haematol. 2009; 145: 624-636
        • Garnache-Ottou F.
        • Feuillard J.
        • Saas P.
        Plasmacytoid dendritic cell leukaemia/lymphoma: towards a well defined entity?.
        Br J Haematol. 2007; 136: 539-548
        • Herling M.
        • Jones D.
        CD4+/CD56+ hematodermic tumor: the features of an evolving entity and its relationship to dendritic cells.
        Am J Clin Pathol. 2007; 127: 687-700
        • Buccisano F.
        • Maurillo L.
        • Gattei V.
        • et al.
        The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia.
        Leukemia. 2006; 20: 1783-1789
        • Freeman S.D.
        • Virgo P.
        • Couzens S.
        • et al.
        Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia.
        J Clin Oncol. 2013; 31: 4123-4131
        • Jourdan E.
        • Boissel N.
        • Chevret S.
        • et al.
        Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia.
        Blood. 2013; 121: 2213-2223
        • Kern W.
        • Voskova D.
        • Schoch C.
        • et al.
        Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia.
        Blood. 2004; 104: 3078-3085
        • Kronke J.
        • Schlenk R.F.
        • Jensen K.O.
        • et al.
        Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group.
        J Clin Oncol. 2011; 29: 2709-2716
        • San Miguel J.F.
        • Vidriales M.B.
        • Lopez-Berges C.
        • et al.
        Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification.
        Blood. 2001; 98: 1746-1751
        • Terwijn M.
        • van Putten W.L.
        • Kelder A.
        • et al.
        High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study.
        J Clin Oncol. 2013; 31: 3889-3897
        • Venditti A.
        • Buccisano F.
        • Del Poeta G.
        • et al.
        Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia.
        Blood. 2000; 96: 3948-3952
        • Yin J.A.
        • O'Brien M.A.
        • Hills R.K.
        • et al.
        Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial.
        Blood. 2012; 120: 2826-2835
        • Al-Mawali A.
        • Gillis D.
        • Lewis I.
        The role of multiparameter flow cytometry for detection of minimal residual disease in acute myeloid leukemia.
        Am J Clin Pathol. 2009; 131: 16-26
        • Wood B.L.
        Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry.
        Cytometry B Clin Cytom. 2016; 90: 47-53
        • Feller N.
        • van der Velden V.H.
        • Brooimans R.A.
        • et al.
        Defining consensus leukemia-associated immunophenotypes for detection of minimal residual disease in acute myeloid leukemia in a multicenter setting.
        Blood Cancer J. 2013; 3: e129
        • Macedo A.
        • Orfao A.
        • Vidriales M.B.
        • et al.
        Characterization of aberrant phenotypes in acute myeloblastic leukemia.
        Ann Hematol. 1995; 70: 189-194
        • Reading C.L.
        • Estey E.H.
        • Huh Y.O.
        • et al.
        Expression of unusual immunophenotype combinations in acute myelogenous leukemia.
        Blood. 1993; 81: 3083-3090
        • Al-Mawali A.
        • Gillis D.
        • Hissaria P.
        • et al.
        Incidence, sensitivity, and specificity of leukemia-associated phenotypes in acute myeloid leukemia using specific five-color multiparameter flow cytometry.
        Am J Clin Pathol. 2008; 129: 934-945
        • Borowitz M.J.
        • Pullen D.J.
        • Winick N.
        • et al.
        Comparison of diagnostic and relapse flow cytometry phenotypes in childhood acute lymphoblastic leukemia: implications for residual disease detection: a report from the children's oncology group.
        Cytometry B Clin Cytom. 2005; 68: 18-24
        • Zeijlemaker W.
        • Gratama J.W.
        • Schuurhuis G.J.
        Tumor heterogeneity makes AML a “moving target” for detection of residual disease.
        Cytometry B Clin Cytom. 2014; 86: 3-14
        • Baer M.R.
        • Stewart C.C.
        • Dodge R.K.
        • et al.
        High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361).
        Blood. 2001; 97: 3574-3580
        • Langebrake C.
        • Brinkmann I.
        • Teigler-Schlegel A.
        • et al.
        Immunophenotypic differences between diagnosis and relapse in childhood AML: implications for MRD monitoring.
        Cytometry B Clin Cytom. 2005; 63: 1-9
        • Wood B.L.
        Flow cytometric monitoring of residual disease in acute leukemia.
        Methods Mol Biol. 2013; 999: 123-136