Advertisement
Review Article| Volume 37, ISSUE 4, P725-751, December 2017

Flow Cytometry of T cells and T-cell Neoplasms

Published:October 04, 2017DOI:https://doi.org/10.1016/j.cll.2017.07.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Swerdlow S.H.
        • Campo E.
        • Harris N.L.
        • et al.
        WHO classification of tumours of haematopoietic and lymphoid tissues.
        4th edition. International Agency for Research on Cancer, Lyon (France)2008: 150
        • Swerdlow S.H.
        • Campo E.
        • Pileri S.A.
        • et al.
        The 2016 revision of the World Health Organization classification of lymphoid neoplasms.
        Blood. 2016; 127: 2375-2390
        • Arber D.A.
        • Orazi A.
        • Hasserjian R.
        • et al.
        The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.
        Blood. 2016; 127: 2391-2405
        • Kaleem Z.
        Flow cytometric analysis of lymphomas: current status and usefulness.
        Arch Pathol Lab Med. 2006; 130: 1850-1858
        • Davis B.H.
        • Holden J.T.
        • Bene M.C.
        • et al.
        2006 Bethesda International Consensus recommendations on the flow cytometric immunophenotypic analysis of hematolymphoid neoplasia: medical indications.
        Cytometry B Clin Cytom. 2007; 72: S5-S13
        • Wood B.L.
        • Arroz M.
        • Barnett D.
        • et al.
        2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia.
        Cytometry B Clin Cytom. 2007; 72: S14-S22
        • Karube K.
        • Aoki R.
        • Nomura Y.
        • et al.
        Usefulness of flow cytometry for differential diagnosis of precursor and peripheral T-cell and NK-cell lymphomas: analysis of 490 cases.
        Pathol Int. 2008; 58: 89-97
        • Gorczyca W.
        • Weisberger J.
        • Liu Z.
        • et al.
        An approach to diagnosis of T-cell lymphoproliferative disorders by flow cytometry.
        Cytometry. 2002; 50: 177-190
        • Jamal S.
        • Picker L.J.
        • Aquino D.B.
        • et al.
        Immunophenotypic analysis of peripheral T-cell neoplasms. A multiparameter flow cytometric approach.
        Am J Clin Pathol. 2001; 116: 512-526
        • Gorczyca W.
        Differential diagnosis of T-cell lymphoproliferative disorders by flow cytometry multicolor immunophenotyping. Correlation with morphology.
        Methods Cell Biol. 2004; 75: 595-621
        • Jones D.
        • Dorfman D.M.
        Phenotypic characterization of subsets of T cell lymphoma: toward a functional classification of T cell lymphoma.
        Leuk Lymphoma. 2001; 40: 449-459
        • Chu P.G.
        • Chang K.L.
        • Arber D.A.
        • et al.
        Immunophenotyping of hematopoietic neoplasms.
        Semin Diagn Pathol. 2000; 17: 236-256
        • Craig F.E.
        • Foon K.A.
        Flow cytometric immunophenotyping for hematologic neoplasms.
        Blood. 2008; 111: 3941-3967
        • Cortelazzo S.
        • Ponzoni M.
        • Ferreri A.J.
        • et al.
        Lymphoblastic lymphoma.
        Crit Rev Oncol Hematol. 2011; 79: 330-343
        • Jaffe E.S.
        • Arber D.A.
        • Campo E.
        • et al.
        Hematopathology.
        2nd edition. Elsevier, Philadelphia2017
        • Conde-Sterling D.A.
        • Aguilera N.S.
        • Nandedkar M.A.
        • et al.
        Immunoperoxidase detection of CD10 in precursor T-lymphoblastic lymphoma/leukemia: a clinicopathologic study of 24 cases.
        Arch Pathol Lab Med. 2000; 124: 704-708
        • Han X.
        • Bueso-Ramos C.E.
        Precursor T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma and acute biphenotypic leukemias.
        Am J Clin Pathol. 2007; 127: 528-544
        • Bene M.C.
        • Castoldi G.
        • Knapp W.
        • et al.
        Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL).
        Leukemia. 1995; 9: 1783-1786
        • You M.J.
        • Medeiros L.J.
        • Hsi E.D.
        T-lymphoblastic leukemia/lymphoma.
        Am J Clin Pathol. 2015; 144: 411-422
        • Patel J.L.
        • Smith L.M.
        • Anderson J.
        • et al.
        The immunophenotype of T-lymphoblastic lymphoma in children and adolescents: a Children's Oncology Group report.
        Br J Haematol. 2012; 159: 454-461
        • Coustan-Smith E.
        • Mullighan C.G.
        • Onciu M.
        • et al.
        Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia.
        Lancet Oncol. 2009; 10: 147-156
        • Rothenberg E.V.
        • Moore J.E.
        • Yui M.A.
        Launching the T-cell-lineage developmental programme.
        Nat Rev Immunol. 2008; 8: 9-21
        • Jain N.
        • Lamb A.V.
        • O'Brien S.
        • et al.
        Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype.
        Blood. 2016; 127: 1863-1869
        • Porwit A.
        • Béné M.C.
        Acute leukemias of ambiguous origin.
        Am J Clin Pathol. 2015; 144: 361-376
        • Weir E.G.
        • Ali Ansari-Lari M.
        • Batista D.A.
        • et al.
        Acute bilineal leukemia: a rare disease with poor outcome.
        Leukemia. 2007; 21: 2264-2270
        • Matutes E.
        • Pickl W.F.
        • Van't Veer M.
        • et al.
        Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification.
        Blood. 2011; 117: 3163-3171
        • Fujii Y.
        • Okumura M.
        • Yamamoto S.
        Flow cytometric study of lymphocytes associated with thymoma and other thymic tumors.
        J Surg Res. 1999; 82: 312-318
        • Li S.
        • Juco J.
        • Mann K.P.
        • et al.
        Flow cytometry in the differential diagnosis of lymphocyte-rich thymoma from precursor T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma.
        Am J Clin Pathol. 2004; 121: 268-274
        • Gorczyca W.
        • Tugulea S.
        • Liu Z.
        • et al.
        Flow cytometry in the diagnosis of mediastinal tumors with emphasis on differentiating thymocytes from precursor T-lymphoblastic lymphoma/leukemia.
        Leuk Lymphoma. 2004; 45: 529-538
        • Nakajima J.
        • Takamoto S.
        • Oka T.
        • et al.
        Flow cytometric analysis of lymphoid cells in thymic epithelial neoplasms.
        Eur J Cardiothorac Surg. 2000; 18: 287-292
        • Fischer L.
        • Hummel M.
        • Burmeister T.
        • et al.
        Skewed expression of natural-killer (NK)-associated antigens on lymphoproliferations of large granular lymphocytes (LGL).
        Hematol Oncol. 2006; 24: 78-85
        • Gastl G.
        • Schmalzl F.
        • Huhn D.
        • et al.
        Large granular lymphocytes: morphological and functional properties. I. Results in normals.
        Blut. 1983; 46: 297-310
        • Ohgami R.S.
        • Ohgami J.K.
        • Pereira I.T.
        • et al.
        Refining the diagnosis of T-cell large granular lymphocytic leukemia by combining distinct patterns of antigen expression with T-cell clonality studies.
        Leukemia. 2011; 25: 1439-1443
        • Strioga M.
        • Pasukoniene V.
        • Characiejus D.
        CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease.
        Immunology. 2011; 134: 17-32
        • Singleton T.P.
        • Yin B.
        • Teferra A.
        • et al.
        Spectrum of clonal large granular lymphocytes (LGLs) of αβ T cells: T-cell clones of undetermined significance, T-cell LGL leukemias, and T-cell immunoclones.
        Am J Clin Pathol. 2015; 144: 137-144
        • Greenberg S.A.
        • Pinkus J.L.
        • Amato A.A.
        • et al.
        Association of inclusion body myositis with T cell large granular lymphocytic leukaemia.
        Brain. 2016; 139: 1348-1360
        • Neff J.L.
        • Howard M.T.
        • Morice W.G.
        Distinguishing T-cell large granular lymphocytic leukemia from reactive conditions: laboratory tools and challenges in their use.
        Surg Pathol Clin. 2013; 6: 631-639
        • Lanier L.L.
        • Spits H.
        • Phillips J.H.
        The developmental relationship between NK cells and T cells.
        Immunol Today. 1992; 13: 392-395
        • Orange J.S.
        • Ballas Z.K.
        Natural killer cells in human health and disease.
        Clin Immunol. 2006; 118: 1-10
        • Caligiuri M.A.
        Human natural killer cells.
        Blood. 2008; 112: 461-469
        • Lanier L.L.
        • Phillips J.H.
        • Hackett J.
        • et al.
        Natural killer cells: definition of a cell type rather than a function.
        J Immunol. 1986; 137: 2735-2739
        • Morice W.G.
        The immunophenotypic attributes of NK cells and NK-cell lineage lymphoproliferative disorders.
        Am J Clin Pathol. 2007; 127: 881-886
        • Morice W.G.
        • Kurtin P.J.
        • Leibson P.J.
        • et al.
        Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocytic leukaemia.
        Br J Haematol. 2003; 120: 1026-1036
        • Farag S.S.
        • Caligiuri M.A.
        Human natural killer cell development and biology.
        Blood Rev. 2006; 20: 123-137
        • Björkström N.K.
        • Riese P.
        • Heuts F.
        • et al.
        Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education.
        Blood. 2010; 116: 3853-3864
        • Lopez-Vergès S.
        • Milush J.M.
        • Pandey S.
        • et al.
        CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset.
        Blood. 2010; 116: 3865-3874
        • Zambello R.
        • Trentin L.
        • Ciccone E.
        • et al.
        Phenotypic diversity of natural killer (NK) populations in patients with NK-type lymphoproliferative disease of granular lymphocytes.
        Blood. 1993; 81: 2381-2385
        • Carding S.R.
        • Egan P.J.
        Gammadelta T cells: functional plasticity and heterogeneity.
        Nat Rev Immunol. 2002; 2: 336-345
        • Roden A.C.
        • Morice W.G.
        • Hanson C.A.
        Immunophenotypic attributes of benign peripheral blood gammadelta T cells and conditions associated with their increase.
        Arch Pathol Lab Med. 2008; 132: 1774-1780
        • Inghirami G.
        • Zhu B.Y.
        • Chess L.
        • et al.
        Flow cytometric and immunohistochemical characterization of the gamma/delta T-lymphocyte population in normal human lymphoid tissue and peripheral blood.
        Am J Pathol. 1990; 136: 357-367
        • McClanahan J.
        • Fukushima P.I.
        • Stetler-Stevenson M.
        Increased peripheral blood gamma delta T-cells in patients with lymphoid neoplasia: a diagnostic dilemma in flow cytometry.
        Cytometry. 1999; 38: 280-285
        • Flammiger A.
        • Bacher U.
        • Christopeit M.
        • et al.
        Multiparameter flow cytometry in the differential diagnosis of aberrant T-cell clones of unclear significance.
        Leuk Lymphoma. 2015; 56: 639-644
        • Béné M.C.
        • Le Bris Y.
        • Robillard N.
        • et al.
        Flow cytometry in hematological nonmalignant disorders.
        Int J Lab Hematol. 2016; 38: 5-16
        • Nascimbeni M.
        • Shin E.C.
        • Chiriboga L.
        • et al.
        Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions.
        Blood. 2004; 104: 478-486
        • Rahemtullah A.
        • Reichard K.K.
        • Preffer F.I.
        • et al.
        A double-positive CD4+CD8+ T-cell population is commonly found in nodular lymphocyte predominant Hodgkin lymphoma.
        Am J Clin Pathol. 2006; 126: 805-814
        • Scrivener S.
        • Goddard R.V.
        • Kaminski E.R.
        • et al.
        Abnormal T-cell function in B-cell chronic lymphocytic leukaemia.
        Leuk Lymphoma. 2003; 44: 383-389
        • Goolsby C.L.
        • Kuchnio M.
        • Finn W.G.
        • et al.
        Expansions of clonal and oligoclonal T cells in B-cell chronic lymphocytic leukemia are primarily restricted to the CD3(+)CD8(+) T-cell population.
        Cytometry. 2000; 42: 188-195
        • Rezvany M.R.
        • Jeddi-Tehrani M.
        • Wigzell H.
        • et al.
        Leukemia-associated monoclonal and oligoclonal TCR-BV use in patients with B-cell chronic lymphocytic leukemia.
        Blood. 2003; 101: 1063-1070
        • Mackus W.J.
        • Frakking F.N.
        • Grummels A.
        • et al.
        Expansion of CMV-specific CD8+CD45RA+CD27− T cells in B-cell chronic lymphocytic leukemia.
        Blood. 2003; 102: 1057-1063
        • Serrano D.
        • Monteiro J.
        • Allen S.L.
        • et al.
        Clonal expansion within the CD4+CD57+ and CD8+CD57+ T cell subsets in chronic lymphocytic leukemia.
        J Immunol. 1997; 158: 1482-1489
        • Martinez A.
        • Pittaluga S.
        • Villamor N.
        • et al.
        Clonal T-cell populations and increased risk for cytotoxic T-cell lymphomas in B-CLL patients: clinicopathologic observations and molecular analysis.
        Am J Surg Pathol. 2004; 28: 849-858
        • Van den Hove L.E.
        • Vandenberghe P.
        • Van Gool S.W.
        • et al.
        Peripheral blood lymphocyte subset shifts in patients with untreated hematological tumors: evidence for systemic activation of the T cell compartment.
        Leuk Res. 1998; 22: 175-184
        • Levy J.A.
        HIV pathogenesis: 25 years of progress and persistent challenges.
        AIDS. 2009; 23: 147-160
        • Giorgi J.V.
        • Detels R.
        T-cell subset alterations in HIV-infected homosexual men: NIAID Multicenter AIDS cohort study.
        Clin Immunol Immunopathol. 1989; 52: 10-18
        • Margolick J.B.
        • Scott E.R.
        • Odaka N.
        • et al.
        Flow cytometric analysis of gamma delta T cells and natural killer cells in HIV-1 infection.
        Clin Immunol Immunopathol. 1991; 58: 126-138
        • Zaunders J.
        • Carr A.
        • McNally L.
        • et al.
        Effects of primary HIV-1 infection on subsets of CD4+ and CD8+ T lymphocytes.
        AIDS. 1995; 9: 561-566
        • Ebell M.H.
        • Call M.
        • Shinholser J.
        • et al.
        Does this patient have infectious mononucleosis? The rational clinical examination systematic review.
        JAMA. 2016; 315: 1502-1509
        • Shannon-Lowe C.
        • Rowe M.
        Epstein Barr virus entry; kissing and conjugation.
        Curr Opin Virol. 2014; 4: 78-84
        • Taylor G.S.
        • Long H.M.
        • Brooks J.M.
        • et al.
        The immunology of Epstein-Barr virus-induced disease.
        Annu Rev Immunol. 2015; 33: 787-821
        • Hudnall S.D.
        • Patel J.
        • Schwab H.
        • et al.
        Comparative immunophenotypic features of EBV-positive and EBV-negative atypical lymphocytosis.
        Cytometry B Clin Cytom. 2003; 55: 22-28
        • Weisberger J.
        • Cornfield D.
        • Gorczyca W.
        • et al.
        Down-regulation of pan-T-cell antigens, particularly CD7, in acute infectious mononucleosis.
        Am J Clin Pathol. 2003; 120: 49-55
        • Dearden C.E.
        T-cell prolymphocytic leukemia.
        Med Oncol. 2006; 23: 17-22
        • Foucar K.
        Mature T-cell leukemias including T-prolymphocytic leukemia, adult T-cell leukemia/lymphoma, and Sézary syndrome.
        Am J Clin Pathol. 2007; 127: 496-510
        • Cady F.M.
        • Morice W.G.
        Flow cytometric assessment of T-cell chronic lymphoproliferative disorders.
        Clin Lab Med. 2007; 27 (vi): 513-532
        • Matutes E.
        • Brito-Babapulle V.
        • Swansbury J.
        • et al.
        Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia.
        Blood. 1991; 78: 3269-3274
        • Ginaldi L.
        • Matutes E.
        • Farahat N.
        • et al.
        Differential expression of CD3 and CD7 in T-cell malignancies: a quantitative study by flow cytometry.
        Br J Haematol. 1996; 93: 921-927
        • Ginaldi L.
        • De Martinis M.
        • Matutes E.
        • et al.
        Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H.
        Leuk Res. 1998; 22: 185-191
        • Chen X.
        • Cherian S.
        Immunophenotypic characterization of T-cell prolymphocytic leukemia.
        Am J Clin Pathol. 2013; 140: 727-735
        • O'Malley D.P.
        T-cell large granular leukemia and related proliferations.
        Am J Clin Pathol. 2007; 127: 850-859
        • Lima M.
        • Almeida J.
        • Dos Anjos Teixeira M.
        • et al.
        TCRalphabeta+/CD4+ large granular lymphocytosis: a new clonal T-cell lymphoproliferative disorder.
        Am J Pathol. 2003; 163: 763-771
        • Yabe M.
        • Medeiros L.J.
        • Wang S.A.
        • et al.
        Clinicopathologic, immunophenotypic, cytogenetic, and molecular features of γδ T-cell large granular lymphocytic leukemia: an analysis of 14 patients suggests biologic differences with αβ T-cell large granular lymphocytic leukemia. [corrected].
        Am J Clin Pathol. 2015; 144: 607-619
        • Lundell R.
        • Hartung L.
        • Hill S.
        • et al.
        T-cell large granular lymphocyte leukemias have multiple phenotypic abnormalities involving pan-T-cell antigens and receptors for MHC molecules.
        Am J Clin Pathol. 2005; 124: 937-946
        • Garcia-Herrera A.
        • Song J.Y.
        • Chuang S.S.
        • et al.
        Nonhepatosplenic γδ T-cell lymphomas represent a spectrum of aggressive cytotoxic T-cell lymphomas with a mainly extranodal presentation.
        Am J Surg Pathol. 2011; 35: 1214-1225
        • Weidmann E.
        Hepatosplenic T cell lymphoma. A review on 45 cases since the first report describing the disease as a distinct lymphoma entity in 1990.
        Leukemia. 2000; 14: 991-997
        • Ahmad E.
        • Kingma D.W.
        • Jaffe E.S.
        • et al.
        Flow cytometric immunophenotypic profiles of mature gamma delta T-cell malignancies involving peripheral blood and bone marrow.
        Cytometry B Clin Cytom. 2005; 67: 6-12
        • Vega F.
        • Medeiros L.J.
        • Gaulard P.
        Hepatosplenic and other gammadelta T-cell lymphomas.
        Am J Clin Pathol. 2007; 127: 869-880
        • Arnulf B.
        • Copie-Bergman C.
        • Delfau-Larue M.H.
        • et al.
        Nonhepatosplenic gammadelta T-cell lymphoma: a subset of cytotoxic lymphomas with mucosal or skin localization.
        Blood. 1998; 91: 1723-1731
        • Hasserjian R.P.
        • Harris N.L.
        NK-cell lymphomas and leukemias: a spectrum of tumors with variable manifestations and immunophenotype.
        Am J Clin Pathol. 2007; 127: 860-868
        • Jiang N.G.
        • Jin Y.M.
        • Niu Q.
        • et al.
        Flow cytometric immunophenotyping is of great value to diagnosis of natural killer cell neoplasms involving bone marrow and peripheral blood.
        Ann Hematol. 2013; 92: 89-96
        • Lima M.
        • Spínola A.
        • Fonseca S.
        • et al.
        Aggressive mature natural killer cell neoplasms: report on a series of 12 European patients with emphasis on flow cytometry based immunophenotype and DNA content of neoplastic natural killer cells.
        Leuk Lymphoma. 2015; 56: 103-112
        • Suzuki R.
        • Suzumiya J.
        • Nakamura S.
        • et al.
        Aggressive natural killer-cell leukemia revisited: large granular lymphocyte leukemia of cytotoxic NK cells.
        Leukemia. 2004; 18: 763-770
        • Li C.
        • Tian Y.
        • Wang J.
        • et al.
        Abnormal immunophenotype provides a key diagnostic marker: a report of 29 cases of de novo aggressive natural killer cell leukemia.
        Transl Res. 2014; 163: 565-577
        • Cao F.
        • Zhao H.
        • Li Y.
        • et al.
        Clinicopathological and phenotypic features of chronic NK cell lymphocytosis identified among patients with asymptomatic lymphocytosis.
        Int J Lab Hematol. 2015; 37: 783-790
        • Merchant S.H.
        • Amin M.B.
        • Viswanatha D.S.
        Morphologic and immunophenotypic analysis of angioimmunoblastic T-cell lymphoma: emphasis on phenotypic aberrancies for early diagnosis.
        Am J Clin Pathol. 2006; 126: 29-38
        • Chen W.
        • Kesler M.V.
        • Karandikar N.J.
        • et al.
        Flow cytometric features of angioimmunoblastic T-cell lymphoma.
        Cytometry B Clin Cytom. 2006; 70: 142-148
        • Stacchini A.
        • Demurtas A.
        • Aliberti S.
        • et al.
        The usefulness of flow cytometric CD10 detection in the differential diagnosis of peripheral T-cell lymphomas.
        Am J Clin Pathol. 2007; 128: 854-864
        • Yuan C.M.
        • Vergilio J.A.
        • Zhao X.F.
        • et al.
        CD10 and BCL6 expression in the diagnosis of angioimmunoblastic T-cell lymphoma: utility of detecting CD10+ T cells by flow cytometry.
        Hum Pathol. 2005; 36: 784-791
        • Baseggio L.
        • Traverse-Glehen A.
        • Berger F.
        • et al.
        CD10 and ICOS expression by multiparametric flow cytometry in angioimmunoblastic T-cell lymphoma.
        Mod Pathol. 2011; 24: 993-1003
        • Baseggio L.
        • Berger F.
        • Morel D.
        • et al.
        Identification of circulating CD10 positive T cells in angioimmunoblastic T-cell lymphoma.
        Leukemia. 2006; 20: 296-303
        • Loghavi S.
        • Wang S.A.
        • Jeffrey Medeiros L.
        • et al.
        Immunophenotypic and diagnostic characterization of angioimmunoblastic T-cell lymphoma by advanced flow cytometric technology.
        Leuk Lymphoma. 2016; 57: 2804-2812
        • Cook J.R.
        • Craig F.E.
        • Swerdlow S.H.
        Benign CD10-positive T cells in reactive lymphoid proliferations and B-cell lymphomas.
        Mod Pathol. 2003; 16: 879-885
        • Serke S.
        • van Lessen A.
        • Hummel M.
        • et al.
        Circulating CD4+ T lymphocytes with intracellular but no surface CD3 antigen in five of seven patients consecutively diagnosed with angioimmunoblastic T-cell lymphoma.
        Cytometry. 2000; 42: 180-187
        • Singh A.
        • Schabath R.
        • Ratei R.
        • et al.
        Peripheral blood sCD3 CD4+ T cells: a useful diagnostic tool in angioimmunoblastic T cell lymphoma.
        Hematol Oncol. 2014; 32: 16-21
        • Moroch J.
        • Copie-Bergman C.
        • de Leval L.
        • et al.
        Follicular peripheral T-cell lymphoma expands the spectrum of classical Hodgkin lymphoma mimics.
        Am J Surg Pathol. 2012; 36: 1636-1646
        • Alikhan M.
        • Song J.Y.
        • Sohani A.R.
        • et al.
        Peripheral T-cell lymphomas of follicular helper T-cell type frequently display an aberrant CD3(-/dim)CD4(+) population by flow cytometry: an important clue to the diagnosis of a Hodgkin lymphoma mimic.
        Mod Pathol. 2016; 29: 1173-1182
        • Qayyum S.
        • Choi J.K.
        Adult T-cell leukemia/lymphoma.
        Arch Pathol Lab Med. 2014; 138: 282-286
        • Matutes E.
        Adult T-cell leukaemia/lymphoma.
        J Clin Pathol. 2007; 60: 1373-1377
        • Dahmoush L.
        • Hijazi Y.
        • Barnes E.
        • et al.
        Adult T-cell leukemia/lymphoma: a cytopathologic, immunocytochemical, and flow cytometric study.
        Cancer. 2002; 96: 110-116
        • Yokote T.
        • Akioka T.
        • Oka S.
        • et al.
        Flow cytometric immunophenotyping of adult T-cell leukemia/lymphoma using CD3 gating.
        Am J Clin Pathol. 2005; 124: 199-204
        • Ohshima K.
        Molecular pathology of adult T-cell leukemia/lymphoma.
        Oncology. 2015; 89: 7-15
        • Kubica A.W.
        • Pittelkow M.R.
        Sézary syndrome.
        Surg Pathol Clin. 2014; 7: 191-202
        • Klemke C.D.
        • Brade J.
        • Weckesser S.
        • et al.
        The diagnosis of Sézary syndrome on peripheral blood by flow cytometry requires the use of multiple markers.
        Br J Dermatol. 2008; 159: 871-880
        • Bahler D.W.
        • Hartung L.
        • Hill S.
        • et al.
        CD158k/KIR3DL2 is a useful marker for identifying neoplastic T-cells in Sézary syndrome by flow cytometry.
        Cytometry B Clin Cytom. 2008; 74: 156-162
        • Morice W.G.
        • Katzmann J.A.
        • Pittelkow M.R.
        • et al.
        A comparison of morphologic features, flow cytometry, TCR-Vbeta analysis, and TCR-PCR in qualitative and quantitative assessment of peripheral blood involvement by Sézary syndrome.
        Am J Clin Pathol. 2006; 125: 364-374
        • Kelemen K.
        • Guitart J.
        • Kuzel T.M.
        • et al.
        The usefulness of CD26 in flow cytometric analysis of peripheral blood in Sézary syndrome.
        Am J Clin Pathol. 2008; 129: 146-156
        • Lima M.
        • Almeida J.
        • dos Anjos Teixeira M.
        • et al.
        Utility of flow cytometry immunophenotyping and DNA ploidy studies for diagnosis and characterization of blood involvement in CD4+ Sézary's syndrome.
        Haematologica. 2003; 88: 874-887
        • Hristov A.C.
        • Vonderheid E.C.
        • Borowitz M.J.
        Simplified flow cytometric assessment in mycosis fungoides and Sézary syndrome.
        Am J Clin Pathol. 2011; 136: 944-953
        • Hapgood G.
        • Savage K.J.
        The biology and management of systemic anaplastic large cell lymphoma.
        Blood. 2015; 126: 17-25
        • Shen H.
        • Tang Y.
        • Xu X.
        • et al.
        Simultaneous cytomorphological and multiparameter flow cytometric analysis of ALK-positive anaplastic large cell lymphoma in children.
        Oncol Lett. 2013; 5: 515-520
        • Muzzafar T.
        • Wei E.X.
        • Lin P.
        • et al.
        Flow cytometric immunophenotyping of anaplastic large cell lymphoma.
        Arch Pathol Lab Med. 2009; 133: 49-56
        • Kesler M.V.
        • Paranjape G.S.
        • Asplund S.L.
        • et al.
        Anaplastic large cell lymphoma: a flow cytometric analysis of 29 cases.
        Am J Clin Pathol. 2007; 128: 314-322
        • Juco J.
        • Holden J.T.
        • Mann K.P.
        • et al.
        Immunophenotypic analysis of anaplastic large cell lymphoma by flow cytometry.
        Am J Clin Pathol. 2003; 119: 205-212
        • Bovio I.M.
        • Allan R.W.
        The expression of myeloid antigens CD13 and/or CD33 is a marker of ALK+ anaplastic large cell lymphomas.
        Am J Clin Pathol. 2008; 130: 628-634