Advertisement
Review Article| Volume 36, ISSUE 4, P693-707, December 2016

Precision Medicine in Toxicology

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chau N.
        • Elliot D.J.
        • Lewis B.C.
        • et al.
        Morphine glucuronidation and glucosidation represent complementary metabolic pathways that are both catalyzed by UDP-glucuronosyltransferase 2B7: kinetic, inhibition, and molecular modeling studies.
        J Pharmacol Exp Ther. 2014; 349: 126-137
        • Klein K.
        • Zanger U.M.
        Pharmacogenomics of cytochrome P450 3A4: recent progress toward the “Missing Heritability” problem.
        Front Genet. 2013; 4: 12
        • Bramness J.G.
        • Skurtveit S.
        • Fauske L.
        • et al.
        Association between blood carisoprodol:meprobamate concentration ratios and CYP2C19 genotype in carisoprodol-drugged drivers: decreased metabolic capacity in heterozygous CYP2C19*1/CYP2C19*2 subjects?.
        Pharmacogenetics. 2003; 13: 383-388
        • Sim S.C.
        • Nordin L.
        • Andersson T.M.
        • et al.
        Association between CYP2C19 polymorphism and depressive symptoms.
        Am J Med Genet B Neuropsychiatr Genet. 2010; 153B: 1160-1166
        • Andresen H.
        • Augustin C.
        • Streichert T.
        Toxicogenetics–cytochrome P450 microarray analysis in forensic cases focusing on morphine/codeine and diazepam.
        Int J Legal Med. 2013; 127: 395-404
        • Crews K.R.
        • Gaedigk A.
        • Dunnenberger H.M.
        • et al.
        Clinical pharmacogenetics implementation consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype.
        Clin Pharmacol Ther. 2012; 91: 321-326
        • Crews K.R.
        • Gaedigk A.
        • Dunnenberger H.M.
        • et al.
        Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update.
        Clin Pharmacol Ther. 2014; 95: 376-382
        • Khetani J.D.
        • Madadi P.
        • Sommer D.D.
        • et al.
        Apnea and oxygen desaturations in children treated with opioids after adenotonsillectomy for obstructive sleep apnea syndrome: a prospective pilot study.
        Paediatr Drugs. 2012; 14: 411-415
        • Barakat N.H.
        • Atayee R.S.
        • Best B.M.
        • et al.
        Urinary hydrocodone and metabolite distributions in pain patients.
        J Anal Toxicol. 2014; 38: 404-409
        • Cao J.M.
        • Ma J.D.
        • Morello C.M.
        • et al.
        Observations on hydrocodone and its metabolites in oral fluid specimens of the pain population: comparison with urine.
        J Opioid Manag. 2014; 10: 177-186
        • Cone E.J.
        • DePriest A.Z.
        • Heltsley R.
        • et al.
        Prescription opioids. IV: disposition of hydrocodone in oral fluid and blood following single-dose administration.
        J Anal Toxicol. 2015; 39: 510-518
        • DePriest A.Z.
        • Puet B.L.
        • Holt A.C.
        • et al.
        Metabolism and disposition of prescription opioids: a Review.
        Forensic Sci Rev. 2015; 27: 115-145
        • Cone E.J.
        • Heltsley R.
        • Black D.L.
        • et al.
        Prescription opioids. II. Metabolism and excretion patterns of hydrocodone in urine following controlled single-dose administration.
        J Anal Toxicol. 2013; 37: 486-494
        • Kapil R.P.
        • Friedman K.
        • Cipriano A.
        • et al.
        Effects of paroxetine, a CYP2D6 inhibitor, on the pharmacokinetic properties of hydrocodone after coadministration with a single-entity, once-daily, extended-release hydrocodone tablet.
        Clin Ther. 2015; 37: 2286-2296
        • Smith H.S.
        The metabolism of opioid agents and the clinical impact of their active metabolites.
        Clin J Pain. 2011; 27: 824-838
        • Cone E.J.
        • DePriest A.Z.
        • Heltsley R.
        • et al.
        Prescription opioids. III. Disposition of oxycodone in oral fluid and blood following controlled single-dose administration.
        J Anal Toxicol. 2015; 39: 192-202
        • Lalovic B.
        • Kharasch E.
        • Hoffer C.
        • et al.
        Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites.
        Clin Pharmacol Ther. 2006; 79: 461-479
        • Fang W.B.
        • Lofwall M.R.
        • Walsh S.L.
        • et al.
        Determination of oxycodone, noroxycodone and oxymorphone by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in human matrices: in vivo and in vitro applications.
        J Anal Toxicol. 2013; 37: 337-344
        • Cone E.J.
        • Heltsley R.
        • Black D.L.
        • et al.
        Prescription opioids. I. Metabolism and excretion patterns of oxycodone in urine following controlled single dose administration.
        J Anal Toxicol. 2013; 37: 255-264
        • Gronlund J.
        • Saari T.I.
        • Hagelberg N.M.
        • et al.
        Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone.
        Br J Clin Pharmacol. 2010; 70: 78-87
        • Leimanis E.
        • Best B.M.
        • Atayee R.S.
        • et al.
        Evaluating the relationship of methadone concentrations and EDDP formation in chronic pain patients.
        J Anal Toxicol. 2012; 36: 239-249
        • Leimanis E.
        • Best B.M.
        • Atayee R.S.
        • et al.
        Evaluating the relationship of methadone concentrations and EDDP formation in chronic pain patients.
        J Anal Toxicol. 2012; 36: 239-249
        • Crettol S.
        • Déglon J.J.
        • Besson J.
        • et al.
        Methadone enantiomer plasma levels, CYP2B6, CYP2C19, and CYP2C9 genotypes, and response to treatment.
        Clin Pharmacol Ther. 2005; 78: 593-604
        • Levran O.
        • Peles E.
        • Hamon S.
        • et al.
        CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction.
        Addict Biol. 2013; 18: 709-716
        • Mouly S.
        • Bloch V.
        • Peoc’h K.
        • et al.
        Methadone dose in heroin-dependent patients: role of clinical factors, comedications, genetic polymorphisms and enzyme activity.
        Br J Clin Pharmacol. 2015; 79: 967-977
        • Chang Y.
        • Moody D.E.
        Glucuronidation of buprenorphine and norbuprenorphine by human liver microsomes and UDP-glucuronosyltransferases.
        Drug Metab Lett. 2009; 3: 101-107
        • Kirsh K.L.
        • Baxter L.E.
        • Rzetelny A.
        • et al.
        A Survey of ASAM Members’ knowledge, attitudes, and practices in urine drug testing.
        J Addict Med. 2015; 9: 399-404
        • Depriest A.
        • Heltsley R.
        • Black D.L.
        • et al.
        Urine drug testing of chronic pain patients. III. Normetabolites as biomarkers of synthetic opioid use.
        J Anal Toxicol. 2010; 34: 444-449
        • Nasser A.F.
        • Greenwald M.K.
        • Vince B.
        • et al.
        Sustained-release buprenorphine (RBP-6000) blocks the effects of opioid challenge with hydromorphone in subjects with opioid use disorder.
        J Clin Psychopharmacol. 2016; 36: 18-26
        • Mercadante S.
        Opioid metabolism and clinical aspects.
        Eur J Pharmacol. 2015; 769: 71-78
        • Wright A.W.
        • Mather L.E.
        • Smith M.T.
        Hydromorphone-3-glucuronide: a more potent neuro-excitant than its structural analogue, morphine-3-glucuronide.
        Life Sci. 2001; 69: 409-420
        • Milne R.W.
        • McLean C.F.
        • Mather L.E.
        • et al.
        Influence of renal failure on the disposition of morphine, morphine-3-glucuronide and morphine-6-glucuronide in sheep during intravenous infusion with morphine.
        J Pharmacol Exp Ther. 1997; 282: 779-786
        • Ravenscroft P.
        • Schneider J.
        Bedside perspectives on the use of opioids: transferring results of clinical research into practice.
        Clin Exp Pharmacol Physiol. 2000; 27: 529-532
        • Fladvad T.
        • Klepstad P.
        • Langaas M.
        • et al.
        Variability in UDP-glucuronosyltransferase genes and morphine metabolism: observations from a cross-sectional multicenter study in advanced cancer patients with pain.
        Pharmacogenet Genomics. 2013; 23: 117-126
        • American Society of Addiction Medicine Board of Directors
        Drug testing: a white paper of the American society of addiction medicine.
        ASAM, Chevy Chase (MD)2013: 108
      1. Group, W.S.A.M.D.s., Interagency Guideline on Prescribing Opioids for Pain. Washington State Agency Medical Director's Group; 2015. p. 105.

      2. Health, O.D.o., 2014 Ohio Drug Overdose Data: General Findings. Ohio Department of Health; 2016. p. 1–10.

        • Dowell D.
        • Haegerich T.M.
        • Chou R.
        CDC guideline for prescribing opioids for chronic pain - United States, 2016.
        MMWR Recomm Rep. 2016; 65: 1-49
        • Xie H.G.
        • Kim R.B.
        • Wood A.J.
        • et al.
        Molecular basis of ethnic differences in drug disposition and response.
        Annu Rev Pharmacol Toxicol. 2001; 41: 815-850
        • Bradford L.D.
        CYP2D6 allele frequency in european caucasians, asians, africans and their descendants.
        Pharmacogenomics. 2002; 3: 229-243
        • Mizutani T.
        PM frequencies of major CYPs in asians and caucasians.
        Drug Metab Rev. 2003; 35: 99-106
        • Solus J.F.
        • Arietta B.J.
        • Harris J.R.
        • et al.
        Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population.
        Pharmacogenomics. 2004; 5: 895-931
        • Roy J.N.
        • Lajoie J.
        • Zijenah L.S.
        • et al.
        CYP3A5 genetic polymorphisms in different ethnic populations.
        Drug Metab Dispos. 2005; 33: 884-887
        • Suarez-Kurtz G.
        Pharmacogenomics in admixed populations.
        Trends Pharmacol Sci. 2005; 26: 196-201
        • Sistonen J.
        • Sajantila A.
        • Lao O.
        • et al.
        CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure.
        Pharmacogenet Genomics. 2007; 17: 93-101