Advertisement
Review Article| Volume 35, ISSUE 4, P723-743, December 2015

Ecology and Epidemiology of Lyme Borreliosis

Published:September 24, 2015DOI:https://doi.org/10.1016/j.cll.2015.08.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Steere A.C.
        • Malawista S.E.
        • Snydman D.R.
        • et al.
        Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three connecticut communities.
        Arthritis Rheum. 1977; 20: 7-17
        • Steere A.C.
        Lyme disease.
        N Engl J Med. 1989; 321: 586-596
        • Lindgren E.
        • Jaenson T.G.T.
        Lyme borreliosis in Europe: influences of climate and climate change, epidemiology, ecology and adaptation measures.
        World Health Organization, Geneva (Switzerland)2006
        • Centers for Disease Control and Prevention
        Summary of notifiable diseases–United States, 2012.
        MMWR Morb Mortal Wkly Rep. 2014; 61: 124
        • Mead P.S.
        Epidemiology of Lyme disease.
        Infect Dis Clin North Am. 2015; 29: 187-210
        • Smith R.
        • Takkinen J.
        Lyme borreliosis: Europe-wide coordinated surveillance and action needed?.
        Euro Surveill. 2006; 11: E060622.1
        • Kugeler K.J.
        • Farley G.M.
        • Forrester D.J.
        • et al.
        Geographic distribution and expansion of human Lyme disease, United States.
        Emerg Infect Dis. 2015; 21: 1455-1457
        • Bacon R.M.
        • Kugeler K.J.
        • Mead P.S.
        Surveillance for Lyme disease–United States, 1992-2006.
        MMWR Surveill Summ. 2008; 57: 1-9
        • Rizzoli A.
        • Hauffe H.
        • Carpi G.
        • et al.
        Lyme borreliosis in Europe.
        Euro Surveill. 2011; 16: 19906
        • Dehnert M.
        • Fingerle V.
        • Klier C.
        • et al.
        Seropositivity of Lyme borreliosis and associated risk factors: a population-based study in children and adolescents in Germany (KiGGS).
        PLoS One. 2012; 7: e41321
        • Skogman B.H.
        • Ekerfelt C.
        • Ludvigsson J.
        • et al.
        Seroprevalence of Borrelia IgG antibodies among young Swedish children in relation to reported tick bites, symptoms and previous treatment for Lyme borreliosis: a population-based survey.
        Arch Dis Child. 2010; 95: 1013-1016
        • Chmielewska-Badora J.
        • Moniuszko A.
        • Zukiewicz-Sobczak W.
        • et al.
        Serological survey in persons occupationally exposed to tick-borne pathogens in cases of co-infections with Borrelia burgdorferi, Anaplasma phagocytophilum, Bartonella spp. and Babesia microti.
        Ann Agric Environ Med. 2012; 19: 271-274
        • Dessau R.B.
        • Bangsborg J.M.
        • Ejlertsen T.
        • et al.
        Utilization of serology for the diagnosis of suspected Lyme borreliosis in Denmark: survey of patients seen in general practice.
        BMC Infect Dis. 2010; 10: 317
      1. Centers for Disease Control and Prevention. Lyme Disease. Available at: http://www.cdc.gov/lyme/. Accessed August 4, 2015.

        • Ogden N.H.
        • Koffi J.K.
        • Pelcat Y.
        • et al.
        Environmental risk from Lyme disease in central and eastern Canada: a summary of recent surveillance information.
        Can Commun Dis Rep. 2014; 40 (Available at:) (Accessed August 4, 2015): 74-82
        • Wilking H.
        • Stark K.
        Trends in surveillance data of human Lyme borreliosis from six federal states in eastern Germany, 2009-2012.
        Ticks Tick Borne Dis. 2014; 5: 219-224
        • Hofhuis A.
        • van der Giessen J.W.
        • Borgsteede F.H.
        • et al.
        Lyme borreliosis in the Netherlands: strong increase in GP consultations and hospital admissions in past 10 years.
        Euro Surveill. 2006; 11: E060622.2
        • Gray J.S.
        • Dautel H.
        • Estrada-Pena A.
        • et al.
        Effects of climate change on ticks and tick-borne diseases in Europe.
        Interdiscip Perspect Infect Dis. 2009; 2009: 593232
        • Jore S.
        • Vanwambeke S.O.
        • Viljugrein H.
        • et al.
        Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin.
        Parasit Vectors. 2014; 7: 11
        • Mechai S.
        • Margos G.
        • Feil E.J.
        • et al.
        Complex population structure of Borrelia burgdorferi in southeastern and south central Canada as revealed by phylogeographic analysis.
        Appl Environ Microbiol. 2015; 81: 1309-1318
        • Qiu W.G.
        • Bruno J.F.
        • McCaig W.D.
        • et al.
        Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America.
        Emerg Infect Dis. 2008; 14: 1097-1104
        • Brisson D.
        • Vandermause M.F.
        • Meece J.K.
        • et al.
        Evolution of northeastern and midwestern Borrelia burgdorferi, United States.
        Emerg Infect Dis. 2010; 16: 911-917
        • Baranton G.
        • De Martino S.J.
        Borrelia burgdorferi sensu lato diversity and its influence on pathogenicity in humans.
        Curr Probl Dermatol. 2009; 37: 1-17
        • Stanek G.
        • Wormser G.P.
        • Gray J.
        • et al.
        Lyme borreliosis.
        Lancet. 2012; 379: 461-473
        • Rudenko N.
        • Golovchenko M.
        • Grubhoffer L.
        • et al.
        Updates on Borrelia burgdorferi sensu lato complex with respect to public health.
        Ticks Tick Borne Dis. 2011; 2: 123-128
        • Ruzic-Sabljic E.
        • Maraspin V.
        • Lotric-Furlan S.
        • et al.
        Characterization of Borrelia burgdorferi sensu lato strains isolated from human material in Slovenia.
        Wien Klin Wochenschr. 2002; 114: 544-550
        • Piesman J.
        • Gern L.
        Lyme borreliosis in Europe and North America.
        Parasitology. 2004; 129: S191-S220
        • Girard Y.A.
        • Fedorova N.
        • Lane R.S.
        Genetic diversity of Borrelia burgdorferi and detection of B. bissettii-like DNA in serum of north-coastal California residents.
        J Clin Microbiol. 2011; 49: 945-954
        • Clark K.L.
        • Leydet B.F.
        • Threlkeld C.
        Geographical and genospecies distribution of Borrelia burgdorferi sensu lato DNA detected in humans in the USA.
        J Med Microbiol. 2014; 63: 674-684
        • Casjens S.R.
        • Fraser-Liggett C.M.
        • Mongodin E.F.
        • et al.
        Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate.
        J Bacteriol. 2011; 193: 1489-1490
        • Stanek G.
        • Reiter M.
        The expanding Lyme Borrelia complex–clinical significance of genomic species?.
        Clin Microbiol Infect. 2011; 17: 487-493
        • Hanincova K.
        • Kurtenbach K.
        • Diuk-Wasser M.
        • et al.
        Epidemic spread of Lyme borreliosis, northeastern United States.
        Emerg Infect Dis. 2006; 12: 604-611
        • Hanincova K.
        • Schafer S.M.
        • Etti S.
        • et al.
        Association of Borrelia afzelii with rodents in Europe.
        Parasitology. 2003; 126: 11-20
        • Hanincova K.
        • Taragelova V.
        • Koci J.
        • et al.
        Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia.
        Appl Environ Microbiol. 2003; 69: 2825-2830
        • Spielman A.
        • Clifford C.M.
        • Piesman J.
        • et al.
        Human babesiosis on Nantucket Island, USA: description of the vector, Ixodes (Ixodes) dammini, n. sp. (Acarina: Ixodidae).
        J Med Entomol. 1979; 15: 218-234
        • Oliver Jr., J.H.
        • Owsley M.R.
        • Hutcheson H.J.
        • et al.
        Conspecificity of the ticks Ixodes scapularis and I. dammini (Acari: Ixodidae).
        J Med Entomol. 1993; 30: 54-63
        • Wesson D.M.
        • McLain D.K.
        • Oliver J.H.
        • et al.
        Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA.
        Proc Natl Acad Sci U S A. 1993; 90: 10221-10225
        • Sonenshine D.E.
        Ecology of non-nidicolous ticks.
        in: Sonenshine D.E. Biology of ticks. Oxford University Press, New York1993: 3-65
        • Cortinas M.R.
        • Guerra M.A.
        • Jones C.J.
        • et al.
        Detection, characterization, and prediction of tick-borne disease foci.
        Int J Med Microbiol. 2002; 291: 11-20
        • Richter D.
        • Debski A.
        • Hubalek Z.
        • et al.
        Absence of Lyme disease spirochetes in larval Ixodes ricinus ticks.
        Vector Borne Zoonotic Dis. 2012; 12: 21-27
        • Rollend L.
        • Fish D.
        • Childs J.E.
        Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations.
        Ticks Tick Borne Dis. 2013; 4: 46-51
        • Anderson J.F.
        Mammalian and avian reservoirs for Borrelia burgdorferi.
        Ann N Y Acad Sci. 1988; 539: 180-191
        • Brinkerhoff R.J.
        • Folsom-O'Keefe C.M.
        • Tsao K.
        • et al.
        Do birds affect Lyme disease risk? Range expansion of the vector-borne pathogen Borrelia burgdorferi.
        Front Ecol Environ. 2011; 9: 103-110
        • LoGiudice K.
        • Ostfeld R.S.
        • Schmidt K.A.
        • et al.
        The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk.
        Proc Natl Acad Sci U S A. 2003; 100: 567-571
        • Apperson C.S.
        • Levine J.F.
        • Evans T.L.
        • et al.
        Relative utilization of reptiles and rodents as hosts by immature Ixodes scapularis (Acari: Ixodidae) in the coastal plain of North Carolina, USA.
        Exp Appl Acarol. 1993; 17: 719-731
        • Kollars Jr., T.M.
        • Oliver Jr., J.H.
        • Kollars P.G.
        • et al.
        Seasonal activity and host associations of Ixodes scapularis (Acari: Ixodidae) in southeastern Missouri.
        J Med Entomol. 1999; 36: 720-726
        • Eisen L.
        • Eisen R.J.
        • Lane R.S.
        The roles of birds, lizards, and rodents as hosts for the western black-legged tick Ixodes pacificus.
        J Vector Ecol. 2004; 29: 295-308
        • Kurtenbach K.
        • Hanincova K.
        • Tsao J.I.
        • et al.
        Fundamental processes in the evolutionary ecology of Lyme borreliosis.
        Nat Rev Microbiol. 2006; 4: 660-669
        • Hamer S.A.
        • Tsao J.I.
        • Walker E.D.
        • et al.
        Invasion of the Lyme disease vector Ixodes scapularis: implications for Borrelia burgdorferi endemicity.
        Ecohealth. 2010; 7: 47-63
        • Walker E.D.
        • Stobierski M.G.
        • Poplar M.L.
        • et al.
        Geographic distribution of ticks (Acari: Ixodidae) in Michigan, with emphasis on Ixodes scapularis and Borrelia burgdorferi.
        J Med Entomol. 1998; 35: 872-882
        • Harrison B.A.
        • Engber B.R.
        • Apperson C.S.
        Ticks (Acari: Ixodida) uncommonly found biting humans in North Carolina.
        J Vector Ecol. 1997; 22: 6-12
        • Anderson J.F.
        • Flavell R.A.
        • Magnarelli L.A.
        • et al.
        Novel Borrelia burgdorferi isolates from Ixodes scapularis and Ixodes dentatus ticks feeding on humans.
        J Clin Microbiol. 1996; 34: 524-529
        • Clark K.L.
        • Leydet B.
        • Hartman S.
        Lyme borreliosis in human patients in Florida and Georgia, USA.
        Int J Med Sci. 2013; 10: 915-931
        • Donahue J.G.
        • Piesman J.
        • Spielman A.
        Reservoir competence of white-footed mice for Lyme disease spirochetes.
        Am J Trop Med Hyg. 1987; 36: 92-96
        • Ostfeld R.S.
        Lyme disease: the ecology of a complex system.
        Oxford University Press, Inc, New York2011
        • Shih C.M.
        • Liu L.P.
        • Spielman A.
        Differential spirochetal infectivities to vector ticks of mice chronically infected by the agent of Lyme disease.
        J Clin Microbiol. 1995; 33: 3164-3168
        • Hofmeister E.K.
        • Ellis B.A.
        • Glass G.E.
        • et al.
        Longitudinal study of infection with Borrelia burgdorferi in a population of Peromyscus leucopus at a Lyme disease-enzootic site in Maryland.
        Am J Trop Med Hyg. 1999; 60: 598-609
        • Tsao J.I.
        • Wootton J.T.
        • Bunikis J.
        • et al.
        An ecological approach to preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle.
        Proc Natl Acad Sci U S A. 2004; 101: 18159-18164
        • Voordouw M.J.
        • Lachish S.
        • Dolan M.C.
        The Lyme disease pathogen has no effect on the survival of its rodent reservoir host.
        PLoS One. 2015; 10: e0118265
        • Mather T.N.
        • Wilson M.L.
        • Moore S.I.
        • et al.
        Comparing the relative potential of rodents as reservoirs of the Lyme disease spirochete (Borrelia burgdorferi).
        Am J Epidemiol. 1989; 130: 143-150
        • Brisson D.
        • Dykhuizen D.E.
        • Ostfeld R.S.
        Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic.
        Proc Biol Sci. 2008; 275: 227-235
        • Eisen L.
        • Eisen R.J.
        • Mun J.
        • et al.
        Transmission cycles of Borrelia burgdorferi and B. bissettii in relation to habitat type in northwestern California.
        J Vector Ecol. 2009; 34: 81-91
        • Stromdahl E.Y.
        • Hickling G.J.
        Beyond Lyme: aetiology of tick-borne human diseases with emphasis on the south-eastern United States.
        Zoonoses Public Health. 2012; 59: 48-64
        • Kurtenbach K.
        • Peacey M.
        • Rijpkema S.G.
        • et al.
        Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England.
        Appl Environ Microbiol. 1998; 64: 1169-1174
        • Kurtenbach K.
        • De Michelis S.
        • Etti S.
        • et al.
        Host association of Borrelia burgdorferi sensu lato–the key role of host complement.
        Trends Microbiol. 2002; 10: 74-79
        • Olsen B.
        • Duffy D.C.
        • Jaenson T.G.
        • et al.
        Transhemispheric exchange of Lyme disease spirochetes by seabirds.
        J Clin Microbiol. 1995; 33: 3270-3274
        • Comstedt P.
        • Asokliene L.
        • Eliasson I.
        • et al.
        Complex population structure of Lyme borreliosis group spirochete Borrelia garinii in subarctic Eurasia.
        PLoS One. 2009; 4: e5841
        • Giardina A.R.
        • Schmidt K.A.
        • Schauber E.M.
        • et al.
        Modeling the role of songbirds and rodents in the ecology of Lyme disease.
        Can J Zool. 2000; 78: 2184-2197
        • Ogden N.H.
        • Lindsay L.R.
        • Hanincova K.
        • et al.
        Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada.
        Appl Environ Microbiol. 2008; 74: 1780-1790
        • Brinkerhoff R.J.
        • Folsom-O'Keefe C.M.
        • Streby H.M.
        • et al.
        Regional variation in immature Ixodes scapularis parasitism on North American songbirds: implications for transmission of the Lyme pathogen, Borrelia burgdorferi.
        J Med Entomol. 2011; 48: 422-428
        • Ogden N.H.
        • Trudel L.
        • Artsob H.
        • et al.
        Ixodes scapularis ticks collected by passive surveillance in Canada: analysis of geographic distribution and infection with Lyme borreliosis agent Borrelia burgdorferi.
        J Med Entomol. 2006; 43: 600-609
        • Ogden N.H.
        • Barker I.K.
        • Francis C.A.
        • et al.
        How far north are migrant birds transporting the tick Ixodes scapularis in Canada? Insights from stable hydrogen isotope analyses of feathers.
        Ticks Tick Borne Dis. 2015; (in press)
        • Jaenson T.G.
        • Talleklint L.
        Incompetence of roe deer as reservoirs of the Lyme borreliosis spirochete.
        J Med Entomol. 1992; 29: 813-817
        • Matuschka F.R.
        • Heiler M.
        • Eiffert H.
        • et al.
        Diversionary role of hoofed game in the transmission of Lyme disease spirochetes.
        Am J Trop Med Hyg. 1993; 48: 693-699
        • Moran Cadenas F.
        • Rais O.
        • Humair P.F.
        • et al.
        Identification of host bloodmeal source and Borrelia burgdorferi sensu lato in field-collected Ixodes ricinus ticks in Chaumont (Switzerland).
        J Med Entomol. 2007; 44: 1109-1117
        • Scott M.C.
        • Harmon J.R.
        • Tsao J.I.
        • et al.
        Reverse line blot probe design and polymerase chain reaction optimization for bloodmeal analysis of ticks from the eastern United States.
        J Med Entomol. 2012; 49: 697-709
        • Telford 3rd, S.R.
        • Mather T.N.
        • Moore S.I.
        • et al.
        Incompetence of deer as reservoirs of the Lyme disease spirochete.
        Am J Trop Med Hyg. 1988; 39: 105-109
        • Spielman A.
        • Wilson M.L.
        • Levine J.F.
        • et al.
        Ecology of Ixodes dammini-borne human babesiosis and Lyme disease.
        Annu Rev Entomol. 1985; 30: 439-460
        • Patrican L.A.
        Acquisition of Lyme disease spirochetes by cofeeding Ixodes scapularis ticks.
        Am J Trop Med Hyg. 1997; 57: 589-593
        • Piesman J.
        • Happ C.M.
        The efficacy of co-feeding as a means of maintaining Borrelia burgdorferi: a North American model system.
        J Vector Ecol. 2001; 26: 216-220
        • Gern L.
        • Rais O.
        Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae).
        J Med Entomol. 1996; 33: 189-192
        • Richter D.
        • Allgower R.
        • Matuschka F.R.
        Co-feeding transmission and its contribution to the perpetuation of the Lyme disease spirochete Borrelia afzelii.
        Emerg Infect Dis. 2002; 8: 1421-1425
        • Sato Y.
        • Nakao M.
        Transmission of the Lyme disease spirochete, Borrelia garinii, between infected and uninfected immature Ixodes persulcatus during cofeeding on mice.
        J Parasitol. 1997; 83: 547-550
        • Voordouw M.J.
        Co-feeding transmission in Lyme disease pathogens.
        Parasitology. 2015; 142: 290-302
        • Gatewood A.G.
        • Liebman K.A.
        • Vourc'h G.
        • et al.
        Climate and tick seasonality are predictors of Borrelia burgdorferi genotype distribution.
        Appl Environ Microbiol. 2009; 75: 2476-2483
        • Johnson R.C.
        • Kodner C.
        • Jarnefeld J.
        • et al.
        Agents of human anaplasmosis and Lyme disease at Camp Ripley, Minnesota.
        Vector Borne Zoonotic Dis. 2011; 11: 1529-1534
        • Mather T.N.
        • Nicholson M.C.
        • Donnelly E.F.
        • et al.
        Entomologic index for human risk of Lyme disease.
        Am J Epidemiol. 1996; 144: 1066-1069
        • Stafford 3rd, K.C.
        • Cartter M.L.
        • Magnarelli L.A.
        • et al.
        Temporal correlations between tick abundance and prevalence of ticks infected with Borrelia burgdorferi and increasing incidence of Lyme disease.
        J Clin Microbiol. 1998; 36: 1240-1244
        • Dubrey S.W.
        • Bhatia A.
        • Woodham S.
        • et al.
        Lyme disease in the United Kingdom.
        Postgrad Med J. 2014; 90: 33-42
        • Wang G.
        • van Dam A.P.
        • Schwartz I.
        • et al.
        Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications.
        Clin Microbiol Rev. 1999; 12: 633-653
        • Jones K.L.
        • Glickstein L.J.
        • Damle N.
        • et al.
        Borrelia burgdorferi genetic markers and disseminated disease in patients with early Lyme disease.
        J Clin Microbiol. 2006; 44: 4407-4413
        • Jones K.L.
        • McHugh G.A.
        • Glickstein L.J.
        • et al.
        Analysis of Borrelia burgdorferi genotypes in patients with Lyme arthritis: high frequency of ribosomal RNA intergenic spacer type 1 strains in antibiotic-refractory arthritis.
        Arthritis Rheum. 2009; 60: 2174-2182
        • Strle K.
        • Jones K.L.
        • Drouin E.E.
        • et al.
        Borrelia burgdorferi RST1 (OspC type A) genotype is associated with greater inflammation and more severe Lyme disease.
        Am J Pathol. 2011; 178: 2726-2739
        • Wang G.
        • Ojaimi C.
        • Wu H.
        • et al.
        Disease severity in a murine model of Lyme borreliosis is associated with the genotype of the infecting Borrelia burgdorferi sensu stricto strain.
        J Infect Dis. 2002; 186: 782-791
        • Wormser G.P.
        • Brisson D.
        • Liveris D.
        • et al.
        Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease.
        J Infect Dis. 2008; 198: 1358-1364
        • Wormser G.P.
        • Liveris D.
        • Nowakowski J.
        • et al.
        Association of specific subtypes of Borrelia burgdorferi with hematogenous dissemination in early Lyme disease.
        J Infect Dis. 1999; 180: 720-725
        • Brisson D.
        • Baxamusa N.
        • Schwartz I.
        • et al.
        Biodiversity of Borrelia burgdorferi strains in tissues of Lyme disease patients.
        PLoS One. 2011; 6: e22926
        • Dykhuizen D.E.
        • Brisson D.
        • Sandigursky S.
        • et al.
        The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans.
        Am J Trop Med Hyg. 2008; 78: 806-810
        • Tijsse-Klasen E.
        • Pandak N.
        • Hengeveld P.
        • et al.
        Ability to cause erythema migrans differs between Borrelia burgdorferi sensu lato isolates.
        Parasit Vectors. 2013; 6: 23
        • Hanincova K.
        • Mukherjee P.
        • Ogden N.H.
        • et al.
        Multilocus sequence typing of Borrelia burgdorferi suggests existence of lineages with differential pathogenic properties in humans.
        PLoS One. 2013; 8: e73066
        • Brisson D.
        • Dykhuizen D.E.
        ospC diversity in Borrelia burgdorferi: different hosts are different niches.
        Genetics. 2004; 168: 713-722
        • Campbell G.L.
        • Paul W.S.
        • Schriefer M.E.
        • et al.
        Epidemiologic and diagnostic studies of patients with suspected early Lyme disease, Missouri, 1990-1993.
        J Infect Dis. 1995; 172: 470-480
        • Wormser G.P.
        • Masters E.
        • Nowakowski J.
        • et al.
        Prospective clinical evaluation of patients from Missouri and New York with erythema migrans-like skin lesions.
        Clin Infect Dis. 2005; 41: 958-965
        • Philipp M.T.
        • Masters E.
        • Wormser G.P.
        • et al.
        Serologic evaluation of patients from Missouri with erythema migrans-like skin lesions with the C6 Lyme test.
        Clin Vaccin Immunol. 2006; 13: 1170-1171
        • Merten H.A.
        • Durden L.A.
        A state-by-state survey of ticks recorded from humans in the United States.
        J Vector Ecol. 2000; 25: 102-113
        • Masters E.J.
        • Grigery C.N.
        • Masters R.W.
        STARI, or Masters disease: Lone Star tick-vectored Lyme-like illness.
        Infect Dis Clin North Am. 2008; 22 (viii): 361-376
        • Stromdahl E.Y.
        • Nadolny R.M.
        • Gibbons J.A.
        • et al.
        Borrelia burgdorferi not confirmed in human-biting Amblyomma americanum ticks from the southeastern United States.
        J Clin Microbiol. 2015; 53: 1697-1704
        • Piesman J.
        • Sinsky R.J.
        Ability to Ixodes scapularis, Dermacentor variabilis, and Amblyomma americanum (Acari: Ixodidae) to acquire, maintain, and transmit Lyme disease spirochetes (Borrelia burgdorferi).
        J Med Entomol. 1988; 25: 336-339
        • Piesman J.
        • Happ C.M.
        Ability of the Lyme disease spirochete Borrelia burgdorferi to infect rodents and three species of human-biting ticks (blacklegged tick, American dog tick, lone star tick) (Acari: Ixodidae).
        J Med Entomol. 1997; 34: 451-456
        • Barbour A.G.
        • Maupin G.O.
        • Teltow G.J.
        • et al.
        Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like illness.
        J Infect Dis. 1996; 173: 403-409
        • James A.M.
        • Liveris D.
        • Wormser G.P.
        • et al.
        Borrelia lonestari infection after a bite by an Amblyomma americanum tick.
        J Infect Dis. 2001; 183: 1810-1814
        • Rudenko N.
        • Golovchenko M.
        • Honig V.
        • et al.
        Detection of Borrelia burgdorferi sensu stricto ospC alleles associated with human Lyme borreliosis worldwide in non-human-biting tick Ixodes affinis and rodent hosts in southeastern United States.
        Appl Environ Microbiol. 2013; 79: 1444-1453
        • Bennet L.
        • Stjernberg L.
        • Berglund J.
        Effect of gender on clinical and epidemiologic features of Lyme borreliosis.
        Vector Borne Zoonotic Dis. 2007; 7: 34-41
        • Fulop B.
        • Poggensee G.
        Epidemiological situation of Lyme borreliosis in Germany: surveillance data from six Eastern German States, 2002 to 2006.
        Parasitol Res. 2008; 103: S117-S120
        • Lohr B.
        • Muller I.
        • Mai M.
        • et al.
        Epidemiology and cost of hospital care for Lyme borreliosis in Germany: lessons from a health care utilization database analysis.
        Ticks Tick Borne Dis. 2015; 6: 56-62
        • Centers for Disease Control and Prevention
        Surveillance for Lyme disease-United States.
        MMWR Morb Mortal Wkly Rep. 2010; 57: 1-9
        • Shapiro E.D.
        Borrelia burgdorferi (Lyme disease).
        Pediatr Rev. 2014; 35: 500-509
        • Smith G.
        • Wileyto E.P.
        • Hopkins R.B.
        • et al.
        Risk factors for Lyme disease in Chester County, Pennsylvania.
        Public Health Rep. 2001; 116: 146-156
        • Killilea M.E.
        • Swei A.
        • Lane R.S.
        • et al.
        Spatial dynamics of Lyme disease: a review.
        Ecohealth. 2008; 5: 167-195
        • Klein J.D.
        • Eppes S.C.
        • Hunt P.
        Environmental and life-style risk factors for Lyme disease in children.
        Clin Pediatr (Phila). 1996; 35: 359-363
        • Connally N.P.
        • Ginsberg H.S.
        • Mather T.N.
        Assessing peridomestic entomological factors as predictors for Lyme disease.
        J Vector Ecol. 2006; 31: 364-370
        • Cook M.J.
        Lyme borreliosis: a review of data on transmission time after tick attachment.
        Int J Gen Med. 2015; 8: 1-8
        • Finch C.
        • Al-Damluji M.S.
        • Krause P.J.
        • et al.
        Integrated assessment of behavioral and environmental risk factors for Lyme disease infection on Block Island, Rhode Island.
        PLoS One. 2014; 9: e84758
        • Phillips C.B.
        • Liang M.H.
        • Sangha O.
        • et al.
        Lyme disease and preventive behaviors in residents of Nantucket Island, Massachusetts.
        Am J Prev Med. 2001; 20: 219-224
        • Vazquez M.
        • Muehlenbein C.
        • Cartter M.
        • et al.
        Effectiveness of personal protective measures to prevent Lyme disease.
        Emerg Infect Dis. 2008; 14: 210-216
        • Aenishaenslin C.
        • Michel P.
        • Ravel A.
        • et al.
        Factors associated with preventive behaviors regarding Lyme disease in Canada and Switzerland: a comparative study.
        BMC Public Health. 2015; 15: 185
        • Connally N.P.
        • Durante A.J.
        • Yousey-Hindes K.M.
        • et al.
        Peridomestic Lyme disease prevention: results of a population-based case-control study.
        Am J Prev Med. 2009; 37: 201-206