Advertisement
Review Article| Volume 35, ISSUE 4, P815-825, December 2015

Alternatives to Serologic Testing for Diagnosis of Lyme Disease

Published:August 31, 2015DOI:https://doi.org/10.1016/j.cll.2015.07.005

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Steere A.C.
        • Coburn J.
        • Glickstein L.
        The emergence of Lyme disease.
        J Clin Invest. 2004; 113: 1093-1101
        • Schriefer M.E.
        Lyme disease diagnosis: serology.
        Clin Lab Med. 2015; (in press)
        • Benach J.L.
        • Bosler E.M.
        • Hanrahan J.P.
        • et al.
        Spirochetes isolated from the blood of two patients with Lyme disease.
        N Engl J Med. 1983; 308: 740-742
        • Kelly R.
        Cultivation of Borrelia hermsi.
        Science. 1971; 173: 443-444
        • Barbour A.G.
        Isolation and cultivation of Lyme disease spirochetes.
        Yale J Biol Med. 1984; 57: 521-525
        • Pollack R.J.
        • Telford 3rd, S.R.
        • Spielman A.
        Standardization of medium for culturing Lyme disease spirochetes.
        J Clin Microbiol. 1993; 31: 1251-1255
        • Callister S.M.
        • Case K.L.
        • Agger W.A.
        • et al.
        Effects of bovine serum albumin on the ability of Barbour-Stoenner-Kelly medium to detect Borrelia burgdorferi.
        J Clin Microbiol. 1990; 28: 363-365
        • Liveris D.
        • Schwartz I.
        • McKenna D.
        • et al.
        Comparison of five diagnostic modalities for direct detection of Borrelia burgdorferi in patients with early Lyme disease.
        Diagn Microbiol Infect Dis. 2012; 73: 243-245
        • Nowakowski J.
        • Schwartz I.
        • Liveris D.
        • et al.
        Laboratory diagnostic techniques for patients with early Lyme disease associated with erythema migrans: a comparison of different techniques.
        Clin Infect Dis. 2001; 33: 2023-2027
        • Sapi E.
        • Pabbati N.
        • Datar A.
        • et al.
        Improved culture conditions for the growth and detection of Borrelia from human serum.
        Int J Med Sci. 2013; 10: 362-376
        • Johnson B.J.
        • Pilgard M.A.
        • Russell T.M.
        Reply to “no evidence for contamination of Borrelia blood cultures: a review of facts”.
        J Clin Microbiol. 2014; 52: 1804
        • Nelson C.
        • Hojvat S.
        • Johnson B.
        • et al.
        Concerns regarding a new culture method for Borrelia burgdorferi not approved for the diagnosis of Lyme disease.
        MMWR Morb Mortal Wkly Rep. 2014; 63: 333
        • Zambrano M.C.
        • Beklemisheva A.A.
        • Bryksin A.V.
        • et al.
        Borrelia burgdorferi binds to, invades, and colonizes native type I collagen lattices.
        Infect Immun. 2004; 72: 3138-3146
        • Wood S.
        • Rattelle A.
        Increased DNA yield following enzymatic release of Borrelia from a collagen matrix in culture.
        Journal of Microbiology and Experimentation. 2015; 2: 00037
        • Dorward D.W.
        • Schwan T.G.
        • Garon C.F.
        Immune capture and detection of Borrelia burgdorferi antigens in urine, blood, or tissues from infected ticks, mice, dogs, and humans.
        J Clin Microbiol. 1991; 29: 1162-1170
        • Douglas T.A.
        • Tamburro D.
        • Fredolini C.
        • et al.
        The use of hydrogel microparticles to sequester and concentrate bacterial antigens in a urine test for Lyme disease.
        Biomaterials. 2011; 32: 1157-1166
        • Smit P.W.
        • Kurkela S.
        • Kuusi M.
        • et al.
        Evaluation of two commercially available rapid diagnostic tests for Lyme borreliosis.
        Eur J Clin Microbiol Infect Dis. 2015; 34: 109-113
        • Dressler F.
        • Yoshinari N.H.
        • Steere A.C.
        The T-cell proliferative assay in the diagnosis of Lyme disease.
        Ann Intern Med. 1991; 115: 533-539
        • Buechner S.A.
        • Lautenschlager S.
        • Itin P.
        • et al.
        Lymphoproliferative responses to Borrelia burgdorferi in patients with erythema migrans, acrodermatitis chronica atrophicans, lymphadenosis benigna cutis, and morphea.
        Arch Dermatol. 1995; 131: 673-677
        • von Baehr V.
        • Doebis C.
        • Volk H.D.
        • et al.
        The lymphocyte transformation test for Borrelia detects active Lyme borreliosis and verifies effective antibiotic treatment.
        Open Neurol J. 2012; 6: 104-112
        • Zoschke D.C.
        • Skemp A.A.
        • Defosse D.L.
        Lymphoproliferative responses to Borrelia burgdorferi in Lyme disease.
        Ann Intern Med. 1991; 114: 285-289
        • Roessner K.
        • Fikrig E.
        • Russell J.Q.
        • et al.
        Prominent T lymphocyte response to Borrelia burgdorferi from peripheral blood of unexposed donors.
        Eur J Immunol. 1994; 24: 320-324
        • Stricker R.B.
        • Winger E.E.
        Decreased CD57 lymphocyte subset in patients with chronic Lyme disease.
        Immunol Lett. 2001; 76: 43-48
        • Marques A.
        • Brown M.R.
        • Fleisher T.A.
        Natural killer cell counts are not different between patients with post-Lyme disease syndrome and controls.
        Clin Vaccine Immunol. 2009; 16: 1249-1250
        • Schrieffer M.
        Borrelia.
        in: Jorgensen J.H. Pfaller M.A. Carroll K.C. Manual of clinical microbiology. 11th edition. ASM Press, Washington, DC2015: 1037-1054
        • Swanson S.J.
        • Neitzel D.
        • Reed K.D.
        • et al.
        Coinfections acquired from ixodes ticks.
        Clin Microbiol Rev. 2006; 19: 708-727
        • Maraspin V.
        • Ogrinc K.
        • Ruzic-Sabljic E.
        • et al.
        Isolation of Borrelia burgdorferi sensu lato from blood of adult patients with borrelial lymphocytoma, Lyme neuroborreliosis, Lyme arthritis and acrodermatitis chronica atrophicans.
        Infection. 2011; 39: 35-40
        • Ivacic L.
        • Reed K.D.
        • Mitchell P.D.
        • et al.
        A LightCycler TaqMan assay for detection of Borrelia burgdorferi sensu lato in clinical samples.
        Diagn Microbiol Infect Dis. 2007; 57: 137-143
        • Kondrusik M.
        • Grygorczuk S.
        • Skotarczak B.
        • et al.
        Molecular and serological diagnosis of Borrelia burgdorferi infection among patients with diagnosed erythema migrans.
        Ann Agric Environ Med. 2007; 14: 209-213
        • Morrison T.B.
        • Ma Y.
        • Weis J.H.
        • et al.
        Rapid and sensitive quantification of Borrelia burgdorferi-infected mouse tissues by continuous fluorescent monitoring of PCR.
        J Clin Microbiol. 1999; 37: 987-992
        • Pahl A.
        • Kuhlbrandt U.
        • Brune K.
        • et al.
        Quantitative detection of Borrelia burgdorferi by real-time PCR.
        J Clin Microbiol. 1999; 37: 1958-1963
        • Pietila J.
        • He Q.
        • Oksi J.
        • et al.
        Rapid differentiation of Borrelia garinii from Borrelia afzelii and Borrelia burgdorferi sensu stricto by LightCycler fluorescence melting curve analysis of a PCR product of the recA gene.
        J Clin Microbiol. 2000; 38: 2756-2759
        • Liveris D.
        • Varde S.
        • Iyer R.
        • et al.
        Genetic diversity of Borrelia burgdorferi in Lyme disease patients as determined by culture versus direct PCR with clinical specimens.
        J Clin Microbiol. 1999; 37: 565-569
        • Wang G.
        • van Dam A.P.
        • Schwartz I.
        • et al.
        Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications.
        Clin Microbiol Rev. 1999; 12: 633-653
        • Wormser G.P.
        • Liveris D.
        • Nowakowski J.
        • et al.
        Association of specific subtypes of Borrelia burgdorferi with hematogenous dissemination in early Lyme disease.
        J Infect Dis. 1999; 180: 720-725
        • Seinost G.
        • Dykhuizen D.E.
        • Dattwyler R.J.
        • et al.
        Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans.
        Infect Immun. 1999; 67: 3518-3524
        • Iyer R.
        • Hardham J.M.
        • Wormser G.P.
        • et al.
        Conservation and heterogeneity of vlsE among human and tick isolates of Borrelia burgdorferi.
        Infect Immun. 2000; 68: 1714-1718
        • Lee S.H.
        • Kim B.J.
        • Kim J.H.
        • et al.
        Differentiation of Borrelia burgdorferi sensu lato on the basis of RNA polymerase gene (rpoB) sequences.
        J Clin Microbiol. 2000; 38: 2557-2562
        • Aguero-Rosenfeld M.E.
        • Wang G.
        • Schwartz I.
        • et al.
        Diagnosis of Lyme borreliosis.
        Clin Microbiol Rev. 2005; 18: 484-509
        • Dumler J.S.
        Molecular diagnosis of Lyme disease: review and meta-analysis.
        Mol Diagn. 2001; 6: 1-11
        • Schmidt B.L.
        PCR in laboratory diagnosis of human Borrelia burgdorferi infections.
        Clin Microbiol Rev. 1997; 10: 185-201
        • Persing D.H.
        • Rutledge B.J.
        • Rys P.N.
        • et al.
        Target imbalance: disparity of Borrelia burgdorferi genetic material in synovial fluid from Lyme arthritis patients.
        J Infect Dis. 1994; 169: 668-672
        • Zore A.
        • Ruzic-Sabljic E.
        • Maraspin V.
        • et al.
        Sensitivity of culture and polymerase chain reaction for the etiologic diagnosis of erythema migrans.
        Wien Klin Wochenschr. 2002; 114: 606-609
        • Carlson D.
        • Hernandez J.
        • Bloom B.J.
        • et al.
        Lack of Borrelia burgdorferi DNA in synovial samples from patients with antibiotic treatment-resistant Lyme arthritis.
        Arthritis Rheum. 1999; 42: 2705-2709
        • Schwartz I.
        • Wormser G.P.
        • Schwartz J.J.
        • et al.
        Diagnosis of early Lyme disease by polymerase chain reaction amplification and culture of skin biopsies from erythema migrans lesions.
        J Clin Microbiol. 1992; 30: 3082-3088
        • Lebech A.M.
        • Hansen K.
        • Brandrup F.
        • et al.
        Diagnostic value of PCR for detection of Borrelia burgdorferi DNA in clinical specimens from patients with erythema migrans and Lyme neuroborreliosis.
        Mol Diagn. 2000; 5: 139-150
        • Oksi J.
        • Marjamaki M.
        • Nikoskelainen J.
        • et al.
        Borrelia burgdorferi detected by culture and PCR in clinical relapse of disseminated Lyme borreliosis.
        Ann Med. 1999; 31: 225-232
        • Jaulhac B.
        • Heller R.
        • Limbach F.X.
        • et al.
        Direct molecular typing of Borrelia burgdorferi sensu lato species in synovial samples from patients with Lyme arthritis.
        J Clin Microbiol. 2000; 38: 1895-1900
        • Kruger W.H.
        • Pulz M.
        Detection of Borrelia burgdorferi in cerebrospinal fluid by the polymerase chain reaction.
        J Med Microbiol. 1991; 35: 98-102
        • Lebech A.M.
        • Hansen K.
        Detection of Borrelia burgdorferi DNA in urine samples and cerebrospinal fluid samples from patients with early and late Lyme neuroborreliosis by polymerase chain reaction.
        J Clin Microbiol. 1992; 30: 1646-1653
        • Lebech A.M.
        Polymerase chain reaction in diagnosis of Borrelia burgdorferi infections and studies on taxonomic classification.
        APMIS Suppl. 2002; : 1-40
        • Stanek G.
        • Fingerle V.
        • Hunfeld K.P.
        • et al.
        Lyme borreliosis: clinical case definitions for diagnosis and management in Europe.
        Clin Microbiol Infect. 2011; 17: 69-79
        • Cerar T.
        • Ogrinc K.
        • Cimperman J.
        • et al.
        Validation of cultivation and PCR methods for diagnosis of Lyme neuroborreliosis.
        J Clin Microbiol. 2008; 46: 3375-3379
        • Goodman J.L.
        • Bradley J.F.
        • Ross A.E.
        • et al.
        Bloodstream invasion in early Lyme disease: results from a prospective, controlled, blinded study using the polymerase chain reaction.
        Am J Med. 1995; 99: 6-12
        • Chmielewska-Badora J.
        • Cisak E.
        • Wojcik-Fatla A.
        • et al.
        Correlation of tests for detection of Borrelia burgdorferi sensu lato infection in patients with diagnosed borreliosis.
        Ann Agric Environ Med. 2006; 13: 307-311
        • Molloy P.J.
        • Persing D.H.
        • Berardi V.P.
        False-positive results of PCR testing for Lyme disease.
        Clin Infect Dis. 2001; 33: 412-413
        • Reed K.D.
        Laboratory testing for Lyme disease: possibilities and practicalities.
        J Clin Microbiol. 2002; 40: 319-324
        • Nocton J.J.
        • Dressler F.
        • Rutledge B.J.
        • et al.
        Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients with Lyme arthritis.
        N Engl J Med. 1994; 330: 229-234
        • Bradley J.F.
        • Johnson R.C.
        • Goodman J.L.
        The persistence of spirochetal nucleic acids in active Lyme arthritis.
        Ann Intern Med. 1994; 120: 487-489
        • Rupprecht T.A.
        • Koedel U.
        • Fingerle V.
        • et al.
        The pathogenesis of Lyme neuroborreliosis: from infection to inflammation.
        Mol Med. 2008; 14: 205-212
        • Gooskens J.
        • Templeton K.E.
        • Claas E.C.
        • et al.
        Evaluation of an internally controlled real-time PCR targeting the ospA gene for detection of Borrelia burgdorferi sensu lato DNA in cerebrospinal fluid.
        Clin Microbiol Infect. 2006; 12: 894-900
        • Wilske B.
        • Fingerle V.
        • Schulte-Spechtel U.
        Microbiological and serological diagnosis of Lyme borreliosis.
        FEMS Immunol Med Microbiol. 2007; 49: 13-21
        • Eiffert H.
        • Karsten A.
        • Thomssen R.
        • et al.
        Characterization of Borrelia burgdorferi strains in Lyme arthritis.
        Scand J Infect Dis. 1998; 30: 265-268
        • von Stedingk L.V.
        • Olsson I.
        • Hanson H.S.
        • et al.
        Polymerase chain reaction for detection of Borrelia burgdorferi DNA in skin lesions of early and late Lyme borreliosis.
        Eur J Clin Microbiol Infect Dis. 1995; 14: 1-5
        • Honegr K.
        • Hulinska D.
        • Beran J.
        • et al.
        Long term and repeated electron microscopy and PCR detection of Borrelia burgdorferi sensu lato after an antibiotic treatment.
        Cent Eur J Public Health. 2004; 12: 6-11
        • Picha D.
        • Moravcova L.
        • Holeckova D.
        • et al.
        Examination of specific DNA by PCR in patients with different forms of Lyme borreliosis.
        Int J Dermatol. 2008; 47: 1004-1010