Review Article| Volume 35, ISSUE 3, P579-590, September 2015

Diagnosis of Disorders of Iron Metabolism in Dogs and Cats


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Pantopoulos K.
        • Porwal S.K.
        • Tartakoff A.
        • et al.
        Mechanisms of mammalian iron homeostasis.
        Biochemistry. 2012; 51: 5705-5724
        • Lawen A.
        • Lane D.J.
        Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action.
        Antioxid Redox Signal. 2013; 18: 2473-2507
        • Harvey J.W.
        Iron metabolism and its disorders.
        in: Kaneko J.J. Harvey J.W. Bruss M.L. Clinical biochemistry of domestic animals. 6th edition. Elsevier, Inc, Burlington (MA)2008: 259-285
        • Brasse-Lagnel C.
        • Karim Z.
        • Letteron P.
        • et al.
        Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation.
        Gastroenterology. 2011; 140: 1261-1271
        • Grimes C.N.
        • Giori L.
        • Fry M.M.
        Role of hepcidin in iron metabolism and potential clinical applications.
        Vet Clin North Am Small Anim Pract. 2012; 42: 85-96
        • Ganz T.
        • Nemeth E.
        The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders.
        Hematology Am Soc Hematol Educ Program. 2011; 2011: 538-542
        • Urrechaga E.
        • Borque L.
        • Escanero J.F.
        Erythrocyte and reticulocyte indices in the assessment of erythropoiesis activity and iron availability.
        Int J Lab Hematol. 2013; 35: 144-149
        • Mast A.E.
        • Blinder M.A.
        • Dietzen D.J.
        Reticulocyte hemoglobin content.
        Am J Hematol. 2008; 83: 307-310
        • Fry M.M.
        • Kirk C.A.
        Reticulocyte indices in a canine model of nutritional iron deficiency.
        Vet Clin Pathol. 2006; 35: 172-181
        • Steinberg J.D.
        • Olver C.S.
        Hematologic and biochemical abnormalities indicating iron deficiency are associated with decreased reticulocyte hemoglobin content (CHr) and reticulocyte volume (rMCV) in dogs.
        Vet Clin Pathol. 2005; 34: 23-27
        • Prins M.
        • van Leeuwen M.W.
        • Teske E.
        Stability and reproducibility of ADVIA 120-measured red blood cell and platelet parameters in dogs, cats, and horses, and the use of reticulocyte haemoglobin content (CH(R)) in the diagnosis of iron deficiency.
        Tijdschr Diergeneeskd. 2009; 134: 272-278
        • Naigamwalla D.Z.
        • Webb J.A.
        • Giger U.
        Iron deficiency anemia.
        Can Vet J. 2012; 53: 250-256
      1. Dorland’s illustrated medical dictionary. 27th edition. W.B. Saunders Co, Philadelphia1988: 747-751
        • Sprague W.S.
        • Hackett T.B.
        • Johnson J.S.
        • et al.
        Hemochromatosis secondary to repeated blood transfusions in a dog.
        Vet Pathol. 2003; 40: 334-337
        • Gultekin G.I.
        • Raj K.
        • Foureman P.
        • et al.
        Erythrocytic pyruvate kinase mutations causing hemolytic anemia, osteosclerosis, and secondary hemochromatosis in dogs.
        J Vet Intern Med. 2012; 26: 935-944
        • Weiden P.L.
        • Hackman R.C.
        • Deeg H.J.
        • et al.
        Long-term survival and reversal of iron overload after marrow transplantation in dogs with congenital hemolytic anemia.
        Blood. 1981; 57: 66-70
        • Zaucha J.A.
        • Yu C.
        • Lothrop Jr., C.D.
        • et al.
        Severe canine hereditary hemolytic anemia treated by nonmyeloablative marrow transplantation.
        Biol Blood Marrow Transplant. 2001; 7: 14-24
        • Kohn B.
        • Goldschmidt M.H.
        • Hohenhaus A.E.
        • et al.
        Anemia, splenomegaly, and increased osmotic fragility of erythrocytes in Abyssinian and Somali cats.
        J Am Vet Med Assoc. 2000; 217: 1483-1491
        • Joe E.
        • Kim S.H.
        • Lee K.B.
        • et al.
        Feasibility and accuracy of dual-source dual-energy CT for noninvasive determination of hepatic iron accumulation.
        Radiology. 2012; 262: 126-135
        • Majhail N.S.
        • Lazarus H.M.
        • Burns L.J.
        Iron overload in hematopoietic cell transplantation.
        Bone Marrow Transplant. 2008; 41: 997-1003
        • Waalen J.
        • Felitti V.J.
        • Gelbart T.
        Screening for hemochromatosis by measuring ferritin levels: a more effective approach.
        Blood. 2008; 111: 3373-3376
        • Ferraro S.
        • Mozzi R.
        • Panteghini M.
        Revaluating serum ferritin as a marker of body iron stores in the traceability era.
        Clin Chem Lab Med. 2012; 50: 1911-1916
        • Seguin M.A.
        • Bunch S.E.
        Iatrogenic copper deficiency associated with long-term copper chelation for treatment of copper storage disease in a Bedlington terrier.
        J Am Vet Med Assoc. 2001; 218: 1593-1597
        • Zentek J.
        • Meyer H.
        Investigations on copper deficiency in growing dogs.
        J Nutr. 1991; 121: S83-S84