Advertisement
Review Article| Volume 34, ISSUE 1, P1-14, March 2014

Download started.

Ok

Overview of Cardiac Markers in Heart Disease

Published:January 16, 2014DOI:https://doi.org/10.1016/j.cll.2013.11.005

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Biomarkers Definitions Working Group
        Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.
        Clin Pharmacol Ther. 2001; 69: 89-95
        • Saenger A.K.
        • Jaffe A.S.
        Requiem for a heavyweight: the demise of creatine kinase-MB.
        Circulation. 2008; 118: 2200-2206
        • Thygesen K.
        • Alpert J.S.
        • Jaffe A.S.
        • et al.
        Third universal definition of myocardial infarction.
        Circulation. 2012; 126: 2020-2035
        • Thygesen K.
        • Alpert J.S.
        • Jaffe A.S.
        • et al.
        Third universal definition of myocardial infarction.
        J Am Coll Cardiol. 2012; 60: 1581-1598
        • Omland T.
        • de Lemos J.A.
        • Sabatine M.S.
        • et al.
        A sensitive cardiac troponin T assay in stable coronary artery disease.
        N Engl J Med. 2009; 361: 2538-2547
        • Saunders J.T.
        • Nambi V.
        • de Lemos J.A.
        • et al.
        Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study.
        Circulation. 2011; 123: 1367-1376
        • Kleine A.H.
        • Glatz J.F.
        • Van Nieuwenhoven F.A.
        • et al.
        Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man.
        Mol Cell Biochem. 1992; 116: 155-162
        • Ishii J.
        • Ozaki Y.
        • Lu J.
        • et al.
        Prognostic value of serum concentration of heart-type fatty acid- binding protein relative to cardiac troponin T on admission in the early hours of acute coronary syndrome.
        Clin Chem. 2005; 51: 1397-1404
        • McCann C.J.
        • Glover B.M.
        • Menown I.B.
        • et al.
        Novel biomarkers in early diagnosis of acute myocardial infarction compared with cardiac troponin T.
        Eur Heart J. 2008; 29: 2843-2850
        • Ruff C.T.
        • Bonaca M.P.
        • Kosowsky J.M.
        • et al.
        Evaluation of the diagnostic performance of heart-type fatty acid binding protein in the BWH-TIMI ED chest pain study.
        J Thromb Thrombolysis. 2013; 36: 361-367
        • Reichlin T.
        • Hochholzer W.
        • Stelzig C.
        • et al.
        Incremental value of copeptin for rapid rule out of acute myocardial infarction.
        J Am Coll Cardiol. 2009; 54: 60-68
        • Potocki M.
        • Reichlin T.
        • Thalmann S.
        • et al.
        Diagnostic and prognostic impact of copeptin and high-sensitivity cardiac troponin T in patients with pre-existing coronary artery disease and suspected acute myocardial infarction.
        Heart. 2012; 98: 558-565
      1. BIC-8 results ESC 2013. Available at: http://www.escardio.org/about/press/press-releases/esc13-amsterdam/Pages/hotline-four-bic-8.aspx. Accessed September 17, 2013.

        • Boerrigter G.
        • Costello-Boerrigter L.C.
        • Burnett J.C.
        Natriuretic peptides in the diagnosis and management of chronic heart failure.
        Heart Fail Clin. 2009; 5: 501-514
        • Dos Santos L.
        • Salles T.A.
        • Arruda-Junior D.F.
        • et al.
        Circulating dipeptidyl peptidase IV activity correlates with cardiac dysfunction in human and experimental heart failure.
        Circ Heart Fail. 2013; 6: 1029-1038
        • Gaggin H.K.
        • Mohammed A.A.
        • Bhardwaj A.
        • et al.
        Heart failure outcomes and benefits of NT- proBNP-guided management in the elderly: results from the prospective, randomized ProBNP outpatient tailored chronic heart failure therapy (PROTECT) study.
        J Card Fail. 2012; 18: 626-634
        • Sabatine M.S.
        • Morrow D.A.
        • de Lemos J.A.
        • et al.
        Evaluation of multiple biomarkers of cardiovascular stress for risk prediction and guiding medical therapy in patients with stable coronary disease.
        Circulation. 2012; 125: 233-240
        • Weinberg E.O.
        • Shimpo M.
        • Hurwitz S.
        • et al.
        Identification of serum soluble ST2 receptor as a novel heart failure biomarker.
        Circulation. 2003; 107: 721-726
        • Kakkar R.
        • Lee R.T.
        The IL-33/ST2 pathway: therapeutic target and novel biomarker.
        Nat Rev Drug Discov. 2008; 7: 827-840
        • Kempf T.
        • von Haehling S.
        • Peter T.
        • et al.
        Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure.
        J Am Coll Cardiol. 2007; 50: 1054-1060
        • Eggers K.M.
        • Kempf T.
        • Wallentin L.
        • et al.
        Change in growth differentiation factor 15 concentrations over time independently predicts mortality in community-dwelling elderly individuals.
        Clin Chem. 2013; 59: 1091-1098
        • Kitamura K.
        • Kangawa K.
        • Kawamoto M.
        • et al.
        Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma.
        Biochem Biophys Res Commun. 1993; 192: 553-560
        • Kobayashi K.
        • Kitamura K.
        • Etoh T.
        • et al.
        Increased plasma adrenomedullin levels in chronic congestive heart failure.
        Am Heart J. 1996; 131: 994-998
        • Ridker P.M.
        High-sensitivity c-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease.
        Circulation. 2001; 103: 1813-1818
        • Ridker P.M.
        • Danielson E.
        • Fonseca F.A.
        • et al.
        Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein.
        N Engl J Med. 2008; 359: 2195-2207
        • Koga S.
        • Ikeda S.
        • Yoshida T.
        • et al.
        Elevated levels of systemic pentraxin 3 are associated with thin-cap fibroatheroma in coronary culprit lesions.
        JACC Cardiovasc Interv. 2013; 6: 945-954
        • Lindahl B.
        Are there really biomarkers of vulnerable plaque?.
        Clin Chem. 2012; 58: 151-153
        • Tang W.H.
        • Brennan M.L.
        • Philip K.
        • et al.
        Plasma myeloperoxidase levels in patients with chronic heart failure.
        Am J Cardiol. 2006; 98: 796-799
        • Nicholls S.J.
        • Tang W.H.
        • Brennan D.
        • et al.
        Risk prediction with serial myeloperoxidase monitoring in patients with acute chest pain.
        Clin Chem. 2011; 57: 1762-1770
        • Ho C.Y.
        • López B.
        • Coelho-Filho O.R.
        • et al.
        Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy.
        N Engl J Med. 2010; 363: 552-563
        • Zachariah J.P.
        • Colan S.D.
        • Lang P.
        • et al.
        Circulating matrix metalloproteinases in adolescents with hypertrophic cardiomyopathy and ventricular arrhythmia.
        Circ Heart Fail. 2012; 5: 462-466
        • Sharma U.C.
        • Pokharel S.
        • van Brakel T.J.
        • et al.
        Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction.
        Circulation. 2004; 110: 3121-3128
        • Gullestad L.
        • Ueland T.
        • Kjekshus J.
        • et al.
        The predictive value of galectin-3 for mortality and cardiovascular events in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA).
        Am Heart J. 2012; 164: 878-883
        • Grandin E.W.
        • Jarolim P.
        • Murphy S.A.
        • et al.
        Galectin-3 and the development of heart failure after acute coronary syndrome: pilot experience from PROVE IT-TIMI 22.
        Clin Chem. 2011; 273: 267-273
        • Hui X.
        • Matsushita K.
        • Sang Y.
        • et al.
        CKD and Cardiovascular Disease in the Atherosclerosis Risk in Communities (ARIC) Study: interactions with age, sex, and race.
        Am J Kidney Dis. 2013; 62: 691-702
        • Akerblom A.
        • Wallentin L.
        • Larsson A.
        • et al.
        Cystatin C- and creatinine-based estimates of renal function and their value for risk prediction in patients with acute coronary syndrome: results from the PLATelet inhibition and patient Outcomes (PLATO) study.
        Clin Chem. 2013; 59: 1369-1375
        • Manzano-Fernández S.
        • Januzzi J.L.
        • Boronat-Garcia M.
        • et al.
        β-trace protein and cystatin C as predictors of long-term outcomes in patients with acute heart failure.
        J Am Coll Cardiol. 2011; 57: 849-858
        • Kawai K.
        • Kawashima S.
        • Miyazaki T.
        • et al.
        Serum beta2-microglobulin concentration as a novel marker to distinguish levels of risk in acute heart failure patients.
        J Cardiol. 2010; 55: 99-107
        • Damman K.
        • Van Veldhuisen D.J.
        • Navis G.
        • et al.
        Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate.
        Heart. 2010; 96: 1297-1302
        • Carlsson A.C.
        • Larsson A.
        • Helmersson-Karlqvist J.
        • et al.
        Urinary kidney injury molecule 1 and incidence of heart failure in elderly men.
        Eur J Heart Fail. 2013; 15: 441-446
        • Jungbauer C.G.
        • Birner C.
        • Jung B.
        • et al.
        Kidney injury molecule-1 and N-acetyl-ss-D-glucosaminidase in chronic heart failure: possible biomarkers of cardiorenal syndrome.
        Eur J Heart Fail. 2011; 13: 1104-1110
        • Ix J.H.
        • Katz R.
        • Kestenbaum B.R.
        • et al.
        Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study).
        J Am Coll Cardiol. 2012; 60: 200-207
        • Kuro-o M.
        • Matsumura Y.
        • Aizawa H.
        • et al.
        Mutation of the mouse klotho gene leads to a syndrome resembling ageing.
        Nature. 1997; 390: 45-51
        • Kurosu H.
        • Yamamoto M.
        • Clark J.D.
        • et al.
        Suppression of aging in mice by the hormone Klotho.
        Science. 2005; 309: 1829-1833
        • Arking D.E.
        • Krebsova A.
        • Macek M.
        • et al.
        Association of human aging with a functional variant of klotho.
        Proc Natl Acad Sci U S A. 2002; 99: 856-861
        • Arking D.E.
        • Becker D.M.
        • Yanek L.R.
        • et al.
        KLOTHO allele status and the risk of early-onset occult coronary artery disease.
        Am J Hum Genet. 2003; 72: 1154-1161
        • Semba R.D.
        • Cappola A.R.
        • Sun K.
        • et al.
        Plasma klotho and cardiovascular disease in adults.
        J Am Geriatr Soc. 2011; 59: 1596-1601
        • Senn T.
        • Hazen S.L.
        • Tang W.H.
        Translating metabolomics to cardiovascular biomarkers.
        Prog Cardiovasc Dis. 2012; 55: 70-76
        • Rhee E.P.
        • Gerszten R.E.
        Metabolomics and cardiovascular biomarker discovery.
        Clin Chem. 2011; 58: 139-147
        • Wang Z.
        • Klipfell E.
        • Bennett B.J.
        • et al.
        Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
        Nature. 2011; 472: 57-63
        • Tang W.H.
        • Wang Z.
        • Levison B.S.
        • et al.
        Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.
        N Engl J Med. 2013; 368: 1575-1584
        • Koeth R.A.
        • Wang Z.
        • Levison B.S.
        • et al.
        Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.
        Nat Med. 2013; 19: 576-585
        • Svingen G.F.
        • Ueland P.M.
        • Pedersen E.K.
        • et al.
        Plasma dimethylglycine and risk of incident acute myocardial infarction in patients with stable angina pectoris.
        Arterioscler Thromb Vasc Biol. 2013; 33: 2041-2048
        • Yap I.K.
        • Brown I.J.
        • Chan Q.
        • et al.
        Metabolome-wide association study identifies multiple biomarkers that discriminate north and south Chinese populations at differing risks of cardiovascular disease: INTERMAP study research articles.
        J Proteome Res. 2010; 9: 6647-6654
        • Eulalio A.
        • Mano M.
        • Dal Ferro M.
        • et al.
        Functional screening identifies miRNAs inducing cardiac regeneration.
        Nature. 2012; 492: 376-381
        • Carè A.
        • Catalucci D.
        • Felicetti F.
        • et al.
        MicroRNA-133 controls cardiac hypertrophy.
        Nat Med. 2007; 13: 613-618
        • Callis T.E.
        • Pandya K.
        • Seok H.Y.
        • et al.
        MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice.
        J Clin Invest. 2009; 119: 2772-2786
        • Bostjancic E.
        • Zidar N.
        • Stajer D.
        • et al.
        MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction.
        Cardiology. 2010; 115: 163-169