Advertisement
Review Article| Volume 33, ISSUE 3, P685-704, September 2013

Future-Generation Sequencing and Clinical Microbiology

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cowan S.T.
        Heretical taxonomy for bacteriologists.
        J Gen Microbiol. 1970; 61: 145-154
        • Staley T.E.
        • Colwell R.R.
        Application of molecular genetics and numerical taxonomy to the classification of bacteria.
        Annu Rev Ecol Syst. 1973; 4: 273-300
        • Wayne L.G.
        • Brenner D.J.
        • Clowell R.R.
        • et al.
        Report of the ad hoc committee on reconciliation of approaches to bacterial systematics.
        Int J Syst Bacteriol. 1987; 37: 463-464
        • Stackebrandt E.
        Phylogenetic relationships vs. phenotypic diversity: how to achieve a phylogenetic classification system of the eubacteria.
        Can J Microbiol. 1988; 34: 552-556
        • Ou C.Y.
        • Ciesielski C.A.
        • Myers G.
        • et al.
        Molecular epidemiology of HIV transmission in a dental practice.
        Science. 1992; 256: 1165-1171
        • Woese C.R.
        • Fox G.E.
        Phylogenetic structure of the prokaryotic domain: the primary kingdoms.
        Proc Natl Acad Sci U S A. 1977; 74: 5088-5090
        • Köser C.U.
        • Holden M.T.
        • Ellington M.J.
        • et al.
        Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak.
        N Engl J Med. 2012; 366: 2267-2275
        • Harris S.R.
        • Cartwright E.J.
        • Török M.E.
        • et al.
        Whole-genome sequencing for analysis of an outbreak of methicillin-resistant Staphylococcus aureus: a descriptive study.
        Lancet Infect Dis. 2013; 13: 130-136
        • Snitkin E.S.
        • Zelazny A.M.
        • Thomas P.J.
        • et al.
        Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing.
        Sci Transl Med. 2012; 4: 148ra116
        • Sandora T.J.
        • Goldmann D.A.
        Preventing lethal hospital outbreaks of antibiotic-resistant bacteria.
        N Engl J Med. 2012; 367: 2168-2170
        • Holden M.T.
        • Hsu L.Y.
        • Kurt K.
        • et al.
        A genomic portrait of the emergence, evolution and global spread of a methicillin resistant Staphylococcus aureus pandemic.
        Genome Res. 2013; 23: 653-664
        • Reuter S.
        • Harrison T.G.
        • Köser C.U.
        • et al.
        A pilot study of rapid whole-genome sequencing for the investigation of a Legionella outbreak.
        BMJ Open. 2013; 3 (pii: e002175)
        • Lipkin W.I.
        The changing face of pathogen discovery and surveillance.
        Nat Rev Microbiol. 2013; 11: 133-141
        • Flusberg B.A.
        • Webster D.R.
        • Lee J.H.
        • et al.
        Direct detection of DNA methylation during single-molecule, real-time sequencing.
        Nat Methods. 2010; 7: 461-465
        • Stull T.L.
        • LiPuma J.J.
        • Edlind T.D.
        A broad-spectrum probe for molecular epidemiology of bacteria: ribosomal RNA.
        J Infect Dis. 1988; 157: 280-286
        • Li W.H.
        • Tanimura M.
        • Sharp P.M.
        Rates and dates of divergence between AIDS virus nucleotide sequences.
        Mol Biol Evol. 1988; 5: 313-330
        • Jolley K.A.
        • Hill D.M.
        • Bratcher H.B.
        • et al.
        Resolution of a meningococcal disease outbreak from whole-genome sequence data with rapid web-based analysis methods.
        J Clin Microbiol. 2012; 50: 3046-3053
        • Flores R.
        • Shi J.
        • Gail M.H.
        • et al.
        Association of fecal microbial diversity and taxonomy with selected enzymatic functions.
        PLoS One. 2012; 7: e39745
        • Gifford S.M.
        • Sharma S.
        • Booth M.
        • et al.
        Expression patterns reveal niche diversification in a marine microbial assemblage.
        ISME J. 2013; 7: 281-298
        • Loman N.J.
        • Constantinidou C.
        • Chan J.Z.
        • et al.
        High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity.
        Nat Rev Microbiol. 2012; 10: 599-606
        • Loman N.J.
        • Misra R.V.
        • Dallman T.J.
        • et al.
        Performance comparison of benchtop high-throughput sequencing platforms.
        Nat Biotechnol. 2012; 30: 434-439
        • Spratt B.G.
        • Hanage W.P.
        • Feil E.J.
        The relative contributions of recombination and point mutation to the diversification of bacterial clones.
        Curr Opin Microbiol. 2001; 4: 602-606
        • Medini D.
        • Donati C.
        • Tettelin H.
        • et al.
        The microbial pan-genome.
        Curr Opin Genet Dev. 2005; 15: 589-594
        • Hunt D.E.
        • David L.A.
        • Gevers D.
        • et al.
        Resource partitioning and sympatric differentiation among closely related bacterioplankton.
        Science. 2008; 320: 1081-1085
        • Szabo G.
        • Preheim S.P.
        • Kauffman K.M.
        • et al.
        Reproducibility of Vibrionaceae population structure in coastal bacterioplankton.
        ISME J. 2013; 7: 509-519
        • Connor N.
        • Sikorski J.
        • Rooney A.P.
        • et al.
        Ecology of speciation in the genus Bacillus.
        Appl Environ Microbiol. 2010; 76: 1349-1358
        • Weissman S.J.
        • Johnson J.R.
        • Tchesnokova V.
        • et al.
        High-resolution two-locus clonal typing of extraintestinal pathogenic Escherichia coli.
        Appl Environ Microbiol. 2012; 78: 1353-1360
        • Paul S.
        • Linardopoulou E.V.
        • Billig M.
        • et al.
        Role of homologous recombination in adaptive diversification of extra-intestinal Escherichia coli.
        J Bacteriol. 2012; 195: 231-242
        • Kopac S.
        • Cohan F.M.
        A theory-based pragmatism for discovering and classifying newly divergent bacterial species.
        Division III Faculty Publications, London2011 ([Paper 214])
        • Preheim S.P.
        • Timberlake S.
        • Polz M.F.
        Merging taxonomy with ecological population prediction in a case study of Vibrionaceae.
        Appl Environ Microbiol. 2011; 77: 7195-7206
      1. Francisco JC, Cohan FM, Krizanc D. Demarcation of bacterial ecotypes from DNA sequence data: a comparative analysis of four algorithms. 2nd IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). February 23, 2012, Las Vegas, NV. p. 1–6.

        • Poirel L.
        • Bonnin R.A.
        • Nordmann P.
        Analysis of the resistome of a multidrug-resistant NDM-1-producing Escherichia coli strain by high-throughput genome sequencing.
        Antimicrob Agents Chemother. 2011; 55: 4224-4229
        • Price J.R.
        • Didelot X.
        • Crook D.W.
        • et al.
        Whole genome sequencing in the prevention and control of Staphylococcus aureus infection.
        J Hosp Infect. 2013; 83: 14-21
        • Cho Y.J.
        • Yi H.
        • Lee J.H.
        • et al.
        Genomic evolution of Vibrio cholerae.
        Curr Opin Microbiol. 2010; 13: 646-651
        • Marttinen P.
        • Hanage W.P.
        • Croucher N.J.
        • et al.
        Detection of recombination events in bacterial genomes from large population samples.
        Nucleic Acids Res. 2012; 40: e6
        • Blount Z.D.
        • Barrick J.E.
        • Davidson C.J.
        • et al.
        Genomic analysis of a key innovation in an experimental Escherichia coli population.
        Nature. 2012; 489: 513-518
        • Ford C.
        • Yusim K.
        • Loerger T.
        • et al.
        Mycobacterium tuberculosis–heterogeneity revealed through whole genome sequencing.
        Tuberculosis. 2012; 92: 194-201
        • Gardy J.L.
        • Johnston J.C.
        • Ho Sui S.J.
        • et al.
        Whole-genome sequencing and social-network analysis of a tuberculosis outbreak.
        N Engl J Med. 2011; 364: 730-739
        • Chaffron S.
        • Rehrauer H.
        • Pernthaler J.
        • et al.
        A global network of coexisting microbes from environmental and whole-genome sequence data.
        Genome Res. 2010; 20: 947-959
        • Grad Y.H.
        • Lipsitch M.
        • Feldgarden M.
        • et al.
        Genomic epidemiology of the Escherichia coli O104: H4 outbreaks in Europe, 2011.
        Proc Natl Acad Sci U S A. 2012; 109: 3065-3070
        • Makkoch J.
        • Suwannakarn K.
        • Payungporn S.
        • et al.
        Whole genome characterization, phylogenetic and genome signature analysis of human pandemic H1N1 virus in Thailand, 2009–2012.
        PLoS One. 2012; 7: e51275
        • Nagarajan N.
        • Cook C.
        • Di Bonaventura M.
        • et al.
        Finishing genomes with limited resources: lessons from an ensemble of microbial genomes.
        BMC Genomics. 2010; 11: 242
        • English A.C.
        • Richards S.
        • Han Y.
        • et al.
        Mind the gap: upgrading genomes with pacific biosciences RS long-read sequencing technology.
        PLoS One. 2012; 7: e47768
        • Au K.F.
        • Underwood J.G.
        • Lee L.
        • et al.
        Improving PacBio long read accuracy by short read alignment.
        PLoS One. 2012; 7: e46679
        • Turner P.C.
        • Yomano L.P.
        • Jarboe L.R.
        • et al.
        Optical mapping and sequencing of the Escherichia coli KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the Zymomonas mobilispdc and adhB genes.
        J Ind Microbiol Biotechnol. 2012; 39: 629-639
        • Peirano G.
        • Pitout J.D.
        Molecular epidemiology of Escherichia coli producing CTX-M β-lactamases: the worldwide emergence of clone ST131 O25: H4.
        Int J Antimicrob Agents. 2010; 35: 316-321
        • DeLong E.F.
        • Pace N.R.
        Environmental diversity of bacteria and archaea.
        Syst Biol. 2001; 50: 470-478
        • Schloss P.D.
        • Handelsman J.
        Biotechnological prospects from metagenomics.
        Curr Opin Biotechnol. 2003; 14: 303-310
        • Tringe S.G.
        • Rubin E.M.
        Metagenomics: DNA sequencing of environmental samples.
        Nat Rev Genet. 2005; 6: 805-814
        • Tyson G.W.
        • Chapman J.
        • Hugenholtz P.
        • et al.
        Community structure and metabolism through reconstruction of microbial genomes from the environment.
        Nature. 2004; 428: 37-43
        • Woyke T.
        • Xie G.
        • Copeland A.
        • et al.
        Assembling the marine metagenome, one cell at a time.
        PLoS One. 2009; 4: e5299
        • Iverson V.
        • Morris R.M.
        • Frazar C.D.
        • et al.
        Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota.
        Science. 2012; 335: 587-590
        • Sogin M.L.
        • Morrison H.G.
        • Huber J.A.
        • et al.
        Microbial diversity in the deep sea and the underexplored “rare biosphere”.
        Proc Natl Acad Sci U S A. 2006; 103: 12115-12120
        • Elshahed M.S.
        • Youssef N.H.
        • Spain A.M.
        • et al.
        Novelty and uniqueness patterns of rare members of the soil biosphere.
        Appl Environ Microbiol. 2008; 74: 5422-5428
        • Abubucker S.
        • Segata N.
        • Goll J.
        • et al.
        Metabolic reconstruction for metagenomic data and its application to the human microbiome.
        PLoS Comput Biol. 2012; 8: e1002358
        • Beck J.M.
        • Young V.B.
        • Huffnagle G.B.
        The microbiome of the lung.
        Transl Res. 2012; 160: 258-266
        • Grif K.
        • Heller I.
        • Prodinger W.M.
        • et al.
        Improvement of detection of bacterial pathogens in normally sterile body sites with a focus on orthopedic samples by use of a commercial 16S rRNA broad-range PCR and sequence analysis.
        J Clin Microbiol. 2012; 50: 2250-2254
        • Sibley C.D.
        • Church D.L.
        • Surette M.G.
        • et al.
        Pyrosequencing reveals the complex polymicrobial nature of invasive pyogenic infections: microbial constituents of empyema, liver abscess, and intracerebral abscess.
        Eur J Clin Microbiol Infect Dis. 2012; 31: 2679-2691
        • Finegold S.M.
        • Dowd S.E.
        • Gontcharova V.
        • et al.
        Pyrosequencing study of fecal microflora of autistic and control children.
        Anaerobe. 2010; 16: 444-453
        • Benach J.L.
        • Li E.
        • McGovern M.M.
        A microbial association with autism.
        MBio. 2012; 3 (pii: e00019–12)
        • Larsen N.
        • Vogensen F.K.
        • van den Berg F.W.
        • et al.
        Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults.
        PLoS One. 2010; 5: e9085
        • Giongo A.
        • Gano K.A.
        • Crabb D.B.
        • et al.
        Toward defining the autoimmune microbiome for type 1 diabetes.
        ISME J. 2010; 5: 82-91
        • Huang Y.J.
        • Lynch S.V.
        • Wiener-Kronish J.P.
        From microbe to microbiota: considering microbial community composition in infections and airway diseases.
        Am J Respir Crit Care Med. 2012; 185: 691-692
        • Dowd S.E.
        • Wolcott R.D.
        • Kennedy J.
        • et al.
        Molecular diagnostics and personalised medicine in wound care: assessment of outcomes.
        J Wound Care. 2011; 20: 232-239
        • Rhoads D.D.
        • Wolcott R.D.
        • Sun Y.
        • et al.
        Comparison of culture and molecular identification of bacteria in chronic wounds.
        Int J Mol Sci. 2012; 13: 2535-2550
        • Dowd S.E.
        • Delton Hanson J.
        • Rees E.
        • et al.
        Survey of fungi and yeast in polymicrobial infections in chronic wounds.
        J Wound Care. 2011; 20: 40-47
        • Al Masalma M.
        • Armougom F.
        • Scheld W.M.
        • et al.
        The expansion of the microbiological spectrum of brain abscesses with use of multiple 16S ribosomal DNA sequencing.
        Clin Infect Dis. 2009; 48: 1169-1178
        • Al Masalma M.
        • Lonjon M.
        • Richet H.
        • et al.
        Metagenomic analysis of brain abscesses identifies specific bacterial associations.
        Clin Infect Dis. 2012; 54: 202-210
        • Moojen D.J.
        • van Hellemondt G.
        • Vogely H.C.
        • et al.
        A prospective multicenter study investigating the incidence of low-grade infection in aseptic loosening of total hip arthroplasty.
        Acta Orthop. 2010; 81: 667-673
        • Bjerkan G.
        • Witsø E.
        • Nor A.
        • et al.
        A comprehensive microbiological evaluation of fifty-four patients undergoing revision surgery due to prosthetic joint loosening.
        J Med Microbiol. 2012; 61: 572-581
        • Xu Y.
        • Rudkjøbing V.B.
        • Simonsen O.
        • et al.
        Bacterial diversity in suspected prosthetic joint infections: an exploratory study using 16S rRNA gene analysis.
        FEMS Immunol Med Microbiol. 2012; 65: 291-304
        • Motoshima M.
        • Yanagihara K.
        • Morinaga Y.
        • et al.
        Identification of bacteria directly from positive blood culture samples by DNA pyrosequencing of the 16S rRNA gene.
        J Med Microbiol. 2012; 61: 1556-1562
        • Insa R.
        • Marín M.
        • Martín A.
        • et al.
        Systematic use of universal 16S rRNA gene polymerase chain reaction (PCR) and sequencing for processing pleural effusions improves conventional culture techniques.
        Medicine (Baltimore). 2012; 91: 103-110
        • Xu Y.
        • Moser C.
        • Al-Soud W.A.
        • et al.
        Culture-dependent and -independent investigations of microbial diversity on urinary catheters.
        J Clin Microbiol. 2012; 50: 3901-3908
        • Branton W.G.
        • Ellestad K.K.
        • Maingat F.
        • et al.
        Brain microbial populations in HIV/AIDS: α-proteobacteria predominate independent of host immune status.
        PLoS One. 2013; 8: e54673
        • Aarthi P.
        • Harini R.
        • Sowmiya M.
        • et al.
        Identification of bacteria in culture negative and polymerase chain reaction (PCR) positive intraocular specimen from patients with infectious endophthalmitis.
        J Microbiol Methods. 2011; 85: 47-52
        • DiGiulio D.B.
        • Romero R.
        • Kusanovic J.P.
        • et al.
        Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes.
        Am J Reprod Immunol. 2010; 64: 38-57
        • Foreman A.
        • Boase S.
        • Psaltis A.
        • et al.
        Role of bacterial and fungal biofilms in chronic rhinosinusitis.
        Curr Allergy Asthma Rep. 2012; 12: 127-135
        • Liu C.M.
        • Cosetti M.K.
        • Aziz M.
        • et al.
        The otologic microbiome: a study of the bacterial microbiota in a pediatric patient with chronic serous otitis media using 16SrRNA gene-based pyrosequencing.
        Arch Otolaryngol Head Neck Surg. 2011; 137: 664-668
        • Wang T.
        • Derhovanessian A.
        • DeCruz S.
        • et al.
        Subsequent infections in survivors of sepsis epidemiology and outcomes.
        J Intensive Care Med. 2013; 28 (in press)
        • Leid J.G.
        • Cope E.
        Population level virulence in polymicrobial communities associated with chronic disease.
        Front Biol. 2011; 6: 435-445
        • Nelson A.
        • De Soyza A.
        • Perry J.D.
        • et al.
        Polymicrobial challenges to Koch’s postulates: ecological lessons from the bacterial vaginosis and cystic fibrosis microbiomes.
        Innate Immun. 2012; 18: 774-783
        • Ren T.
        • Glatt D.U.
        • Nguyen T.N.
        • et al.
        16S rRNA survey revealed complex bacterial communities and evidence of bacterial interference on human adenoids.
        Environ Microbiol. 2013; 15: 535-547
        • Jeraldo P.
        • Sipos M.
        • Chia N.
        • et al.
        Quantification of the relative roles of niche and neutral processes in structuring gastrointestinal microbiomes.
        Proc Natl Acad Sci U S A. 2012; 109: 9692-9698
        • Abreu N.A.
        • Nagalingam N.A.
        • Song Y.
        • et al.
        Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis.
        Sci Transl Med. 2012; 4: 151ra124
        • Khoruts A.
        • Dicksved J.
        • Jansson J.K.
        • et al.
        Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea.
        J Clin Gastroenterol. 2010; 44: 354-360
        • Reeves A.E.
        • Theriot C.M.
        • Bergin I.L.
        • et al.
        The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection.
        Gut Microbes. 2011; 2: 145-158
        • Im G.Y.
        • Modayil R.J.
        • Lin C.T.
        • et al.
        The appendix may protect against clostridium difficile recurrence.
        Clin Gastroenterol Hepatol. 2011; 9: 1072-1077
        • Lawley T.D.
        • Clare S.
        • Walker A.W.
        • et al.
        Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice.
        PLoS Pathog. 2012; 8: e1002995
        • Pace N.R.
        Mapping the tree of life: progress and prospects.
        Microbiol Mol Biol Rev. 2009; 73: 565-576
        • Kimura M.
        Estimation of evolutionary distances between homologous nucleotide sequences.
        Proc Natl Acad Sci U S A. 1981; 78: 454-458
        • Cole J.R.
        • Chai B.
        • Marsh T.L.
        • et al.
        The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy.
        Nucleic Acids Res. 2003; 31: 442-443
        • Schloss P.D.
        Secondary structure improves OTU assignments of 16S rRNA gene sequences.
        ISME J. 2013; 7: 457-460
        • Clarke J.
        • Wu H.C.
        • Jayasinghe L.
        • et al.
        Continuous base identification for single-molecule nanopore DNA sequencing.
        Nat Nanotechnol. 2009; 4: 265-270
        • Korlach J.
        • Bjornson K.P.
        • Chaudhuri B.P.
        • et al.
        Real-time DNA sequencing from single polymerase molecules.
        Meth Enzymol. 2010; 472: 431-455
        • Eid J.
        • Fehr A.
        • Gray J.
        • et al.
        Real-time DNA sequencing from single polymerase molecules.
        Science. 2009; 323: 133-138
        • Eyre D.W.
        • Golubchik T.
        • Gordon N.C.
        • et al.
        A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance.
        BMJ Open. 2012; 2: e0011224
        • Angiuoli S.V.
        • White J.R.
        • Matalka M.
        • et al.
        Resources and costs for microbial sequence analysis evaluated using virtual machines and cloud computing.
        PLoS One. 2011; 6: e26624
        • Rogers Y.H.
        • Venter J.C.
        Genomics: massively parallel sequencing.
        Nature. 2005; 437: 326-327
        • Mardis E.R.
        Anticipating the $1,000 genome.
        Genome Biol. 2006; 7: 112
        • Gullapalli R.R.
        • Desai K.V.
        • Santana-Santos L.
        • et al.
        Next generation sequencing in clinical medicine: challenges and lessons for pathology and biomedical informatics.
        J Pathol Inform. 2012; 3: 40
        • Mavromatis K.
        • Land M.L.
        • Brettin T.S.
        • et al.
        The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation.
        PLoS One. 2012; 7: e48837
        • Klassen J.L.
        • Currie C.R.
        Gene fragmentation in bacterial draft genomes: extent, consequences and mitigation.
        BMC Genomics. 2012; 13: 14
        • Church G.M.
        • Gao Y.
        • Kosuri S.
        Next-generation digital information storage in DNA.
        Science. 2012; 337: 1628
        • Wiecek A.S.
        NCBI database shut down averted.
        Biotechniques. 2011; 50: 4
        • Schweitzer E.J.
        Reconciliation of the cloud computing model with US federal electronic health record regulations.
        J Am Med Inform Assoc. 2012; 19: 161-165
        • Ahuja S.P.
        • Mani S.
        • Zambrano J.
        A survey of the state of cloud computing in healthcare.
        Netw Comm Tech. 2012; 1: 12
        • Torri F.
        • Dinov I.D.
        • Zamanyan A.
        • et al.
        Next generation sequence analysis and computational genomics using graphical pipeline workflows.
        Genes (Basel). 2012; 3: 545-575
        • Zhang Y.
        • Erdmann J.
        • Chilton J.
        • et al.
        CLIA-certified next-generation sequencing analysis in the cloud.
        BMC Proc. 2012; 6: 54
        • Clinical and Laboratory Standards Institute (CLSI)
        Nucleic acid sequencing methods in diagnostic laboratory medicine; approved guideline.
        (CLSI document MM9-A (ISBN 1-56238-558-3)) Clinical and Laboratory Standards Institute, Wayne (PA)2004
        • Clinical and Laboratory Standards Institute (CLSI)
        Genotyping for infectious diseases: identification and characterization; approved guideline (MM10-A).
        Clinical and Laboratory Standards Institute, Wayne (PA)2004
        • Clinical and Laboratory Standards Institute (CLSI)
        Interpretive criteria for identification of bacteria and fungi by DNA target sequencing; approved guideline (MM18-A).
        Clinical and Laboratory Standards Institute, Wayne (PA)2004
        • Ashelford K.E.
        • Chuzhanova N.A.
        • Fry J.C.
        • et al.
        At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies.
        Appl Environ Microbiol. 2005; 71: 7724-7736
        • Schloss P.D.
        • Gevers D.
        • Westcott S.L.
        Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies.
        PLoS One. 2011; 6: e27310
        • Haas B.J.
        • Gevers D.
        • Earl A.M.
        • et al.
        Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons.
        Genome Res. 2011; 21: 494-504
        • Conlan S.
        • Kong H.H.
        • Segre J.A.
        Species-level analysis of DNA sequence data from the NIH human microbiome project.
        PLoS One. 2012; 7: e47075
        • Campbell B.J.
        • Kirchman D.L.
        Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient.
        ISME J. 2012; 7: 210-220
        • Gilbert J.A.
        • Field D.
        • Swift P.
        • et al.
        The seasonal structure of microbial communities in the Western English Channel.
        Environ Microbiol. 2009; 11: 3132-3139
        • Gilbert J.A.
        • Field D.
        • Swift P.
        • et al.
        Defining seasonal marine microbial community dynamics.
        ISME J. 2011; 6: 298-308
        • Caporaso J.G.
        • Paszkiewicz K.
        • Field D.
        • et al.
        The Western English Channel contains a persistent microbial seed bank.
        ISME J. 2011; 6: 1089-1093
        • Campbell B.J.
        • Yu L.
        • Heidelberg J.F.
        • et al.
        Activity of abundant and rare bacteria in a coastal ocean.
        Proc Natl Acad Sci U S A. 2011; 108: 12776-12781
        • Hunt D.E.
        • Lin Y.
        • Church M.J.
        • et al.
        The relationship between abundance and specific activity of bacterioplankton in open ocean surface waters.
        Appl Environ Microbiol. 2012; 79: 177-184
        • Gilbert K.J.
        • Andrew R.L.
        • Bock D.G.
        • et al.
        Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program STRUCTURE.
        Mol Ecol. 2012; 21: 4925-4930
        • MacGowan A.P.
        • Wise R.
        Establishing MIC breakpoints and the interpretation of in vitro susceptibility tests.
        J Antimicrob Chemother. 2001; 48: 17-28
        • Phillips I.
        Reevaluation of antibiotic breakpoints.
        Clin Infect Dis. 2001; 33: S230-S232
        • Kahlmeter G.
        • Brown D.F.
        • Goldstein F.W.
        • et al.
        European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria.
        J Antimicrob Chemother. 2003; 52: 145-148
        • Turnidge J.
        • Paterson D.L.
        Setting and revising antibacterial susceptibility breakpoints.
        Clin Microbiol Rev. 2007; 20: 391-408
        • Mitka M.
        Antibiotic breakpoints.
        JAMA. 2012; 307: 1015
        • Frei C.R.
        • Wiederhold N.P.
        • Burgess D.S.
        Antimicrobial breakpoints for Gram-negative aerobic bacteria based on pharmacokinetic–pharmacodynamic models with Monte Carlo simulation.
        J Antimicrob Chemother. 2008; 61: 621-628
        • Benfey P.N.
        • Mitchell-Olds T.
        From genotype to phenotype: systems biology meets natural variation.
        Science. 2008; 320: 495-497
        • Shortliffe E.H.
        • Axline S.G.
        • Buchanan B.G.
        • et al.
        An artificial intelligence program to advise physicians regarding antimicrobial therapy.
        Comput Biomed Res. 1973; 6: 544-560
        • Sielaff B.H.
        • Johnson E.A.
        • Matsen J.M.
        Computer-assisted bacterial identification utilizing antimicrobial susceptibility profiles generated by autobac 1.
        J Clin Microbiol. 1976; 3: 105-109
        • Williams K.N.
        • Davidson J.M.
        • Lynn R.
        • et al.
        A computer system for clinical microbiology.
        J Clin Pathol. 1978; 31: 1193-1201
        • Kricheysky M.I.
        Coping with computers and computer evangelists.
        Annu Rev Microbiol. 1982; 36: 311-341
        • Khatib F.
        • Cooper S.
        • Tyka M.D.
        • et al.
        Algorithm discovery by protein folding game players.
        Proc Natl Acad Sci U S A. 2011; 108: 18949-18953
        • Carruthers S.
        • Masson M.E.
        • Stege U.
        Human performance on hard non-Euclidean graph problems: vertex cover.
        J Problem Solving. 2012; 5 ([article 5])
        • Von Ahn L.
        Games with a purpose.
        Computer. 2006; 39: 92-94
        • Quinn A.
        • Bederson B.
        Human computation: charting the growth of a burgeoning field.
        Computer. 2010; 1: 10-37
      2. Nov O, Ofer A, Anderson D. Dusting for science: motivation and participation of digital citizen science volunteers. Proc of the 2011 iConference. February 8–11, 2011, Seattle WA. p. 68–74.

        • Barrington L.
        • Turnbull D.
        • Lanckriet G.
        Game-powered machine learning.
        Proc Natl Acad Sci U S A. 2012; 109: 6411-6416
        • Korpela E.J.
        SETI@ home, BOINC, and volunteer distributed computing.
        Annu Rev Earth Planet Sci. 2012; 40: 69-87
        • Moore J.H.
        • Lari R.C.
        • Hill D.
        • et al.
        Human microbiome visualization using 3d technology.
        Pac Symp Biocomput. 2011; : 154-164
        • Zhu Z.
        • Niu B.
        • Chen J.
        • et al.
        MGAviewer: a desktop visualization tool for analysis of metagenomics alignment data.
        Bioinformatics. 2013; 29: 122-123
        • Ondov B.D.
        • Bergman N.H.
        • Phillippy A.M.
        Interactive metagenomic visualization in a Web browser.
        BMC Bioinformatics. 2011; 12: 385
        • Hawkins A.K.
        • O'Doherty K.C.
        “Who owns your poop?”: insights regarding the intersection of human microbiome research and the ELSI aspects of biobanking and related studies.
        BMC Med Genomics. 2011; 4: 72
        • Fierer N.
        • Lauber C.L.
        • Zhou N.
        • et al.
        Forensic identification using skin bacterial communities.
        Proc Natl Acad Sci U S A. 2010; 107: 6477-6481
        • Kennedy D.M.
        • Stanton J.A.
        • García J.A.
        • et al.
        Microbial analysis of bite marks by sequence comparison of streptococcal DNA.
        PLoS One. 2012; 7: e51757
        • Knights D.
        • Kuczynski J.
        • Charlson E.S.
        • et al.
        Bayesian community-wide culture-independent microbial source tracking.
        Nat Methods. 2011; 8: 761-763
        • Flores G.E.
        • Bates S.T.
        • Caporaso J.G.
        • et al.
        Diversity, distribution and sources of bacteria in residential kitchens.
        Environ Microbiol. 2013; 15: 588-596
        • Flores G.E.
        • Bates S.T.
        • Knights D.
        • et al.
        Microbial biogeography of public restroom surfaces.
        PLoS One. 2011; 6: e28132
        • Biesecker L.G.
        • Burke W.
        • Kohane I.
        • et al.
        Next-generation sequencing in the clinic: are we ready?.
        Nat Rev Genet. 2012; 13: 818-824
        • Dowd S.E.
        • Delton Hanson J.
        • Rees E.
        • et al.
        Research survey of fungi and yeast in polymicrobial infections in chronic wounds.
        J Wound Care. 2011; 20: 40-47
        • Wolcott R.
        • Dowd S.
        The role of biofilms: are we hitting the right target?.
        Plast Reconstr Surg. 2011; 127: 36S-37S
        • Berland L.L.
        • Silverman S.G.
        • Gore R.M.
        • et al.
        Managing incidental findings on abdominal CT: white paper of the ACR incidental findings committee.
        J Am Coll Radiol. 2010; 7: 754-773
        • Morris Z.
        • Whiteley W.N.
        • Longstreth Jr., W.T.
        • et al.
        Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis.
        BMJ. 2009; 339: b3016
        • Wagner M.M.
        • Hogan W.R.
        The accuracy of medication data in an outpatient electronic medical record.
        J Am Med Inform Assoc. 1996; 3: 234-244
        • Peabody J.W.
        • Luck J.
        • Jain S.
        • et al.
        Assessing the accuracy of administrative data in health information systems.
        Med Care. 2004; 42: 1066-1072
        • Gevers D.
        • Knight R.
        • Petrosino J.F.
        • et al.
        The human microbiome project: a community resource for the healthy human microbiome.
        PLoS Biol. 2012; 10: e1001377