Advertisement
Review Article| Volume 33, ISSUE 3, P629-650, September 2013

Download started.

Ok

Bacterial Strain Typing

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Van Belkum A.
        • Tassios P.T.
        • Dijkshoorn L.
        • et al.
        Guidelines for the validation and application of typing methods for use in bacterial epidemiology.
        Clin Microbiol Infect. 2007; 13: 1-46
        • Kamerbeek J.
        • Schouls L.
        • Kolk A.
        • et al.
        Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology.
        J Clin Microbiol. 1997; 35: 907-914
        • Akopyanz N.
        • Bukanov N.O.
        • Westblom T.U.
        • et al.
        DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting.
        Nucleic Acids Res. 1992; 20: 5137-5142
        • Versalovic J.
        • Koeuth T.
        • Lupski R.
        Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes.
        Nucleic Acids Res. 1991; 19: 6823-6831
        • Bidet P.
        • Barbut F.
        • Lalande V.
        • et al.
        Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing.
        FEMS Microbiol Lett. 1999; 175: 261-266
        • Van Belkum A.
        Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA).
        FEMS Immunol Med Microbiol. 2007; 49: 22-27
        • Díez-Villaseñor C.
        • Almendros C.
        • García-Martínez J.
        • et al.
        Diversity of CRISPR loci in Escherichia coli.
        Microbiology. 2010; 156: 1351-1361
        • Driscoll J.R.
        Spoligotyping for molecular epidemiology of the Mycobacterium tuberculosis complex.
        Methods Mol Biol. 2009; 551: 117-128
        • Gardner S.
        • Slezak T.
        Scalable SNP analyses of 100+ bacterial or viral genomes.
        J Forensic Res. 2010; 1: 107
        • Garaizar J.
        • Rementeria A.
        • Porwollik S.
        DNA microarray technology: a new tool for the epidemiological typing of bacterial pathogens?.
        FEMS Immunol Med Microbiol. 2006; 47: 178-189
        • Maiden M.C.
        • Bygraves J.A.
        • Feil E.
        • et al.
        Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms.
        Proc Natl Acad Sci U S A. 1998; 95: 3140-3145
        • Rasko D.A.
        • Myers G.S.
        • Ravel J.
        Visualization of comparative genomic analyses by BLAST score ratio.
        BMC Bioinformatics. 2005; 6: 2
        • Schwartz D.C.
        • Cantor C.R.
        Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis.
        Cell. 1984; 37: 67-75
        • Hunter S.B.
        • Vauterin P.
        • Lambert-Fair M.A.
        • et al.
        Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard.
        J Clin Microbiol. 2005; 43: 1045-1050
        • Herschleb J.
        • Ananiev G.
        • Schwartz D.C.
        Pulsed-field gel electrophoresis.
        Nat Protoc. 2007; 2: 677-684
        • Swaminathan B.
        • Barrett T.J.
        • Hunter S.B.
        • et al.
        PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States.
        Emerg Infect Dis. 2001; 7: 382-389
        • Cooper K.L.
        • MacCannell D.R.
        • Ribot E.M.
        Pulsenet: a program to detect and track food contamination events. Wiley Handbook of Science and Technology for Homeland Security.
        ([Internet]) John Wiley & Sons, Inc, 2008 (Available at:) (Accessed November 15, 2012)
        • Brengi S.P.
        • O’Brien S.B.
        • Pichel M.
        • et al.
        Development and validation of a PulseNet standardized protocol for subtyping isolates of Cronobacter species.
        Foodborne Pathog Dis. 2012; 9: 861-867
        • Pichel M.
        • Brengi S.P.
        • Cooper K.L.
        • et al.
        Standardization and international multicenter validation of a PulseNet pulsed-field gel electrophoresis protocol for subtyping Shigella flexneri isolates.
        Foodborne Pathog Dis. 2012; 9: 418-424
        • Ribot E.M.
        • Fair M.A.
        • Gautom R.
        • et al.
        Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet.
        Foodborne Pathog Dis. 2006; 3: 59-67
        • Zelazny A.M.
        • Root J.M.
        • Shea Y.R.
        • et al.
        Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bolletii.
        J Clin Microbiol. 2009; 47: 1985-1995
        • Bikandi J.
        • San Millán R.
        • Rementeria A.
        • et al.
        In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction.
        Bioinformatics. 2004; 20: 798-799
      1. MLVA - Multiple Loci VNTR Analysis databases and software [Internet]. Available at: http://minisatellites.u-psud.fr/. Accessed January 14, 2013.

        • Danin-Poleg Y.
        • Cohen L.A.
        • Gancz H.
        • et al.
        Vibrio cholerae strain typing and phylogeny study based on simple sequence repeats.
        J Clin Microbiol. 2007; 45: 736-746
        • Lindstedt B.A.
        • Vardund T.
        • Aas L.
        • et al.
        Multiple-locus variable-number tandem-repeats analysis of Salmonella enterica subsp. enterica serovar Typhimurium using PCR multiplexing and multicolor capillary electrophoresis.
        J Microbiol Methods. 2004; 59: 163-172
        • Stubbs S.L.
        • Brazier J.S.
        • O’Neill G.L.
        • et al.
        PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes.
        J Clin Microbiol. 1999; 37: 461-463
        • Lindstedt B.A.
        • Brandal L.T.
        • Aas L.
        • et al.
        Study of polymorphic variable-number of tandem repeats loci in the ECOR collection and in a set of pathogenic Escherichia coli and Shigella isolates for use in a genotyping assay.
        J Microbiol Methods. 2007; 69: 197-205
        • Frénay H.M.
        • Bunschoten A.E.
        • Schouls L.M.
        • et al.
        Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of protein A gene polymorphism.
        Eur J Clin Microbiol Infect Dis. 1996; 15: 60-64
        • Tang Y.W.
        • Waddington M.G.
        • Smith D.H.
        • et al.
        Comparison of protein A gene sequencing with pulsed-field gel electrophoresis and epidemiologic data for molecular typing of methicillin-resistant Staphylococcus aureus.
        J Clin Microbiol. 2000; 38: 1347-1351
        • Golding G.R.
        • Campbell J.L.
        • Spreitzer D.J.
        • et al.
        A preliminary guideline for the assignment of methicillin-resistant Staphylococcus aureus to a Canadian pulsed-field gel electrophoresis epidemic type using spa typing.
        Can J Infect Dis Med Microbiol. 2008; 19: 273-281
        • Koreen L.
        • Ramaswamy S.V.
        • Graviss E.A.
        • et al.
        spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation.
        J Clin Microbiol. 2004; 42: 792-799
        • Lancefield R.
        Current knowledge of type-specific M antigens of group A streptococci.
        J Immunol. 1962; 89: 307-313
        • McGregor K.F.
        • Spratt B.G.
        • Kalia A.
        • et al.
        Multilocus sequence typing of Streptococcus pyogenes representing most known emm types and distinctions among subpopulation genetic structures.
        J Bacteriol. 2004; 186: 4285-4294
        • Steer A.C.
        • Law I.
        • Matatolu L.
        • et al.
        Global emm type distribution of group A streptococci: systematic review and implications for vaccine development.
        Lancet Infect Dis. 2009; 9: 611-616
      2. Streptococcus pyogenes emm sequence database [Internet]. Available at: http://www.cdc.gov/ncidod/biotech/strep/strepblast.htm. Accessed January 14, 2013.

      3. PubMLST.org [Internet]. Available at: http://pubmlst.org/. Accessed January 14, 2013.

      4. MLST.NET [Internet]. Available at: http://www.mlst.net. Accessed January 14, 2013.

        • Chan M.S.
        • Maiden M.C.
        • Spratt B.G.
        Database-driven multi locus sequence typing (MLST) of bacterial pathogens.
        Bioinformatics. 2001; 17: 1077-1083
        • Jolley K.A.
        • Chan M.S.
        • Maiden M.C.
        mlstdbNet - distributed multi-locus sequence typing (MLST) databases.
        BMC Bioinformatics. 2004; 5: 86
        • Aanensen D.M.
        • Spratt B.G.
        The multilocus sequence typing network: mlst.net.
        Nucleic Acids Res. 2005; 33: W728-W733
        • Teh C.S.
        • Chua K.H.
        • Thong K.L.
        Genetic variation analysis of Vibrio cholerae using multilocus sequencing typing and multi-virulence locus sequencing typing.
        Infect Genet Evol. 2011; 11: 1121-1128
        • Zhang W.
        • Jayarao B.M.
        • Knabel S.J.
        Multi-virulence-locus sequence typing of Listeria monocytogenes.
        Appl Environ Microbiol. 2004; 70: 913-920
        • Yousef Mohamad K.
        • Roche S.M.
        • Myers G.
        • et al.
        Preliminary phylogenetic identification of virulent Chlamydophila pecorum strains.
        Infect Genet Evol. 2008; 8: 764-771
        • Katz L.S.
        • Bolen C.R.
        • Harcourt B.H.
        • et al.
        Meningococcus genome informatics platform: a system for analyzing multilocus sequence typing data.
        Nucleic Acids Res. 2009; 37: W606-W611
      5. Meningococcus Genome Informatics Platform [Internet]. Available at: http://mgip.biology.gatech.edu/home.php. Accessed January 14, 2013.

        • Boers S.A.
        • Van der Reijden W.A.
        • Jansen R.
        High-throughput multilocus sequence typing: bringing molecular typing to the next level.
        PLoS One. 2012; 7: e39630
        • Larsen M.V.
        • Cosentino S.
        • Rasmussen S.
        • et al.
        Multilocus sequence typing of total-genome-sequenced bacteria.
        J Clin Microbiol. 2012; 50: 1355-1361
        • Lomonaco S.
        • Verghese B.
        • Gerner-Smidt P.
        • et al.
        Novel epidemic clones of Listeria monocytogenes, United States, 2011.
        Emerg Infect Dis. 2013; 19: 147-150
        • Jolley K.A.
        • Maiden M.C.
        BIGSdb: scalable analysis of bacterial genome variation at the population level.
        BMC Bioinformatics. 2010; 11: 595
        • Loman N.J.
        • Constantinidou C.
        • Chan J.Z.
        • et al.
        High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity.
        Nat Rev Microbiol. 2012; 10: 599-606
        • Chan J.Z.
        • Pallen M.J.
        • Oppenheim B.
        • et al.
        Genome sequencing in clinical microbiology.
        Nat Biotechnol. 2012; 30: 1068-1071
        • Stucki D.
        • Malla B.
        • Hostettler S.
        • et al.
        Two new rapid SNP-typing methods for classifying Mycobacterium tuberculosis complex into the main phylogenetic lineages.
        PLoS One. 2012; 7 ([Internet]) (Available at:) (Accessed January 14, 2013)
        • Price L.B.
        • Stegger M.
        • Hasman H.
        • et al.
        Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock.
        MBio. 2012; 3 (pii:e00305–11)
        • Van Gent M.
        • Bart M.J.
        • Van der Heide H.G.
        • et al.
        SNP-based typing: a useful tool to study Bordetella pertussis populations.
        PLoS One. 2011; 6 ([Internet]) (Available at:) (Accessed January 14, 2013)
        • Brouns S.J.
        • Jore M.M.
        • Lundgren M.
        • et al.
        Small CRISPR RNAs guide antiviral defense in prokaryotes.
        Science. 2008; 321: 960-964
        • Marraffini L.A.
        • Sontheimer E.J.
        CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.
        Science. 2008; 322: 1843-1845
        • Barrangou R.
        • Fremaux C.
        • Deveau H.
        • et al.
        CRISPR provides acquired resistance against viruses in prokaryotes.
        Science. 2007; 315: 1709-1712
        • Makarova K.S.
        • Haft D.H.
        • Barrangou R.
        • et al.
        Evolution and classification of the CRISPR-Cas systems.
        Nat Rev Microbiol. 2011; 9: 467-477
        • Abadia E.
        • Zhang J.
        • Dos Vultos T.
        • et al.
        Resolving lineage assignation on Mycobacterium tuberculosis clinical isolates classified by spoligotyping with a new high-throughput 3R SNPs based method.
        Infect Genet Evol. 2010; 10: 1066-1074
        • Liu F.
        • Kariyawasam S.
        • Jayarao B.M.
        • et al.
        Subtyping Salmonella enterica serovar enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs).
        Appl Environ Microbiol. 2011; 77: 4520-4526
        • Delannoy S.
        • Beutin L.
        • Burgos Y.
        • et al.
        Specific detection of enteroaggregative hemorrhagic Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCR.
        J Clin Microbiol. 2012; 50: 3485-3492
        • Carrillo C.D.
        • Kruczkiewicz P.
        • Mutschall S.
        • et al.
        A framework for assessing the concordance of molecular typing methods and the true strain phylogeny of Campylobacter jejuni and C. coli using draft genome sequence data.
        Front Cell Infect Microbiol. 2012; 2 ([Internet]) (Available at:) (Accessed January 14, 2013)
      6. Bacterial Isolate Genome Sequence Database (BIGSdb) [Internet]. Available at: http://pubmlst.org/software/database/bigsdb/. Accessed January 14, 2013.

      7. ARDB - Antibiotic Resistance Genes Database [Internet]. Available at: http://ardb.cbcb.umd.edu/. Accessed January 14, 2013.

      8. The Comprehensive Antibiotic Resistance Database [Internet]. Available at: http://arpcard.mcmaster.ca/. Accessed January 14, 2013.

      9. VFDB: Virulence Factors Database [Internet]. Available at: http://www.mgc.ac.cn/VFs/. Accessed January 14, 2013.

        • Aarestrup F.M.
        • Brown E.W.
        • Detter C.
        • et al.
        Integrating genome-based informatics to modernize global disease monitoring, information sharing, and response.
        Emerg Infect Dis. 2012; 18: e1
        • Cronquist A.B.
        • Mody R.K.
        • Atkinson R.
        • et al.
        Impacts of culture-independent diagnostic practices on public health surveillance for bacterial enteric pathogens.
        Clin Infect Dis. 2012; 54: S432-S439