Advertisement
Review Article| Volume 32, ISSUE 4, P585-599, December 2012

Clinical Integration of Next-Generation Sequencing Technology

  • R.R. Gullapalli
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine, S-417 BST, 200 Lothrop Street, Pittsburgh, PA 15261, USA
    Search for articles by this author
  • M. Lyons-Weiler
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine, S-417 BST, 200 Lothrop Street, Pittsburgh, PA 15261, USA

    University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
    Search for articles by this author
  • P. Petrosko
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine, S-417 BST, 200 Lothrop Street, Pittsburgh, PA 15261, USA

    University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
    Search for articles by this author
  • R. Dhir
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine, S-417 BST, 200 Lothrop Street, Pittsburgh, PA 15261, USA

    Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Boulevard, BAUM 423, Pittsburgh, PA 15206-3701, USA

    University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
    Search for articles by this author
  • M.J. Becich
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine, S-417 BST, 200 Lothrop Street, Pittsburgh, PA 15261, USA

    Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Boulevard, BAUM 423, Pittsburgh, PA 15206-3701, USA

    University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
    Search for articles by this author
  • W.A. LaFramboise
    Correspondence
    Corresponding author. Department of Pathology, University of Pittsburgh School of Medicine, Shadyside Hospital WG 02.11, 5230 Center Avenue, Pittsburgh, PA 15232.
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine, S-417 BST, 200 Lothrop Street, Pittsburgh, PA 15261, USA

    Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Boulevard, BAUM 423, Pittsburgh, PA 15206-3701, USA

    University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Campbell P.J.
        • Stephens P.J.
        • Pleasance E.D.
        • et al.
        Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing.
        Nat Genet. 2008; 40: 722-729
        • Shendure J.
        • Ji H.
        Next-generation DNA sequencing.
        Nat Biotechnol. 2008; 26: 1135-1145
        • Harismendy O.
        • Ng P.C.
        • Strausberg R.L.
        • et al.
        Evaluation of next generation sequencing platforms for population targeted sequencing studies.
        Genome Biol. 2009; 10: R32
        • Metzker M.L.
        Sequencing technologies - the next generation.
        Nat Rev Genet. 2010; 11: 31-46
        • Ross J.S.
        • Cronin M.
        Whole cancer genome sequencing by next-generation methods.
        Am J Clin Pathol. 2011; 136: 527-539
        • West M.
        • Ginsburg G.S.
        • Huang A.T.
        • et al.
        Embracing the complexity of genomic data for personalized medicine.
        Genome Res. 2006; 16: 559-566
        • Shah S.P.
        • Morin R.D.
        • Khattra J.
        • et al.
        Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution.
        Nature. 2009; 461: 809-813
        • Loman N.J.
        • Misra R.V.
        • Dallman T.J.
        • et al.
        Performance comparison of bench top high-throughput sequencing platforms.
        Nat Biotechnol. 2012; 30: 434-439
        • Horn S.
        Target enrichment via DNA hybridization capture.
        Methods Mol Biol. 2012; 840: 177-188
        • Feero W.G.
        • Guttmacher A.E.
        • Collins F.S.
        Genomic medicine–an updated primer.
        N Engl J Med. 2010; 362: 2001-2011
        • Lee J.T.
        • Li L.
        • Brafford P.A.
        • et al.
        PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas.
        Pigment Cell Melanoma Res. 2010; 23: 820-827
        • Kelly C.M.
        • Bernard P.S.
        • Krishnamurthy S.
        • et al.
        Agreement in risk prediction between the 21-gene recurrence score assay (Oncotype DX(R)) and the PAM50 breast cancer intrinsic Classifier™ in early-stage estrogen receptor-positive breast cancer.
        Oncologist. 2012; 17: 492-498
        • van de Vijver M.J.
        • He Y.D.
        • van't Veer L.J.
        • et al.
        A gene-expression signature as a predictor of survival in breast cancer.
        N Engl J Med. 2002; 347: 1999-2009
        • Collins F.S.
        • Barker A.D.
        Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies.
        Sci Am. 2007; 296: 50-57
        • International Cancer Genome Consortium
        International network of cancer genome projects.
        Nature. 2010; 464: 993-998
        • Li H.
        • Ruan J.
        • Durbin R.
        Mapping short DNA sequencing reads and calling variants using mapping quality scores.
        Genome Res. 2008; 18: 1851-1858
        • Lippert R.A.
        • Mobarry C.M.
        • Walenz B.P.
        A space-efficient construction of the Burrows-Wheeler transform for genomic data.
        J Comput Biol. 2005; 12 ([review]): 943-951
        • Pop M.
        • Salzberg S.L.
        Bioinformatics challenges of new sequencing technology.
        Trends Genet. 2008; 24 ([review]): 142-149
        • Li R.
        • Li Y.
        • Kristiansen K.
        • et al.
        SOAP: short oligonucleotide alignment program.
        Bioinformatics. 2008; 24: 713-714
        • Lin H.
        • Zhang Z.
        • Zhang M.Q.
        • et al.
        ZOOM! Zillions of oligos mapped.
        Bioinformatics. 2008; 24: 2431-2437
        • Rumble S.M.
        • Lacroute P.
        • Dalca A.V.
        • et al.
        SHRiMP: accurate mapping of short color-space reads.
        PLoS Comput Biol. 2009; 5: e1000386
        • Bao S.
        • Jiang R.
        • Kwan W.
        • et al.
        Evaluation of next-generation sequencing software in mapping and assembly.
        J Hum Genet. 2011; 56: 406-414
        • Zerbino D.R.
        • Birney E.
        Velvet: algorithms for de novo short read assembly using de Bruijn graphs.
        Genome Res. 2008; 18: 821-829
        • Zerbino D.R.
        Using the Velvet de novo assembler for short-read sequencing technologies.
        Curr Protoc Bioinformatics. 2010; 11: 5
        • Chaisson M.J.
        • Pevzner P.A.
        Short read fragment assembly of bacterial genomes.
        Genome Res. 2008; 18: 324-330
        • Hernandez D.
        • François P.
        • Farinelli L.
        • et al.
        De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer.
        Genome Res. 2008; 18: 802-809
        • Bryant Jr., D.W.
        • Wong W.K.
        • Mockler T.C.
        QSRA: a quality-value guided de novo short read assembler.
        BMC Bioinformatics. 2009; 10: 69
        • Simpson J.T.
        • Wong K.
        • Jackman S.D.
        • et al.
        ABySS: a parallel assembler for short read sequence data.
        Genome Res. 2009; 19: 1117-1123
        • Paez J.G.
        • Jänne P.A.
        • Lee J.C.
        • et al.
        EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.
        Science. 2004; 304: 1497-1500
        • Nik-Zainal S.
        • Van Loo P.
        • Wedge D.C.
        • Breast Cancer Working Group of the International Cancer Genome Consortium
        • et al.
        The life history of 21 breast cancers.
        Cell. 2012; 149: 994-1007
        • Goya R.
        • Sun M.G.
        • Morin R.D.
        • et al.
        SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors.
        Bioinformatics. 2010; 26: 730-736
        • Koboldt D.C.
        • Zhang Q.
        • Larson D.E.
        • et al.
        VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing.
        Genome Res. 2012; 22: 568-576
        • Larson D.E.
        • Harris C.C.
        • Chen K.
        • et al.
        SomaticSniper: identification of somatic point mutations in whole genome sequencing data.
        Bioinformatics. 2012; 28: 311-317
        • Li H.
        • Handsaker B.
        • Wysoker A.
        • 1000 Genome Project Data Processing Subgroup
        • et al.
        The Sequence Alignment/Map format and SAMtools.
        Bioinformatics. 2009; 25: 2078-2079
        • Ye K.
        • Schulz M.H.
        • Long Q.
        • et al.
        Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads.
        Bioinformatics. 2009; 25: 2865-2871
        • DePristo M.A.
        • Banks E.
        • Poplin R.
        • et al.
        A framework for variation discovery and genotyping using next-generation DNA sequencing data.
        Nat Genet. 2011; 43: 491-498
        • Campbell P.J.
        • Yachida S.
        • Mudie L.J.
        • et al.
        The patterns and dynamics of genomic instability in metastatic pancreatic cancer.
        Nature. 2010; 467: 1109-1113
        • Chiang D.Y.
        • Getz G.
        • Jaffe D.B.
        • et al.
        High-resolution mapping of copy-number alterations with massively parallel sequencing.
        Nat Methods. 2009; 6: 99-103
        • Chen K.
        • Wallis J.W.
        • McLellan M.D.
        • et al.
        BreakDancer: an algorithm for high-resolution mapping of genomic structural variation.
        Nat Methods. 2009; 6: 677-681
        • Stransky N.
        • Egloff A.M.
        • Tward A.D.
        • et al.
        The mutational landscape of head and neck squamous cell carcinoma.
        Science. 2011; 333: 1157-1160
        • Verhaak R.G.
        • Hoadley K.A.
        • Purdom E.
        • Cancer Genome Atlas Research Network
        • et al.
        Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.
        Cancer Cell. 2010; 17: 98-110
        • Berger M.F.
        • Levin J.Z.
        • Vijayendran K.
        • et al.
        Integrative analysis of the melanoma transcriptome.
        Genome Res. 2010; 20: 413-427
        • Weir B.A.
        • Woo M.S.
        • Getz G.
        • et al.
        Characterizing the cancer genome in lung adenocarcinoma.
        Nature. 2007; 450: 893-898
        • Trapnell C.
        • Pachter L.
        • Salzberg S.L.
        TopHat: discovering splice junctions with RNA-Seq.
        Bioinformatics. 2009; 25: 1105-1111
        • Moxon S.
        • Schwach F.
        • Dalmay T.
        • et al.
        A toolkit for analysing large-scale plant small RNA datasets.
        Bioinformatics. 2008; 24: 2252-2253
        • Friedländer M.R.
        • Chen W.
        • Adamidi C.
        • et al.
        Discovering microRNAs from deep sequencing data using miRDeep.
        Nat Biotechnol. 2008; 26: 407-415
        • Yang X.
        • Li L.
        miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants.
        Bioinformatics. 2011; 27: 2614-2615
        • 1000 Genomes Project Consortium
        A map of human genome variation from population-scale sequencing.
        Nature. 2010; 467: 1061-1073
        • International Human Genome Sequencing Consortium
        Finishing the euchromatic sequence of the human genome.
        Nature. 2004; 431: 931-945
      1. Personal Genome Project. Available at: http://www.personalgenomes.org. Accessed May 21, 2012.

        • Venter J.C.
        Multiple personal genomes await.
        Nature. 2010; 464: 676-677
        • International HapMap 3 Consortium
        Integrating common and rare genetic variation in diverse human populations.
        Nature. 2010; 467: 52-58
        • Gulcher J.
        • Stefansson K.
        Population genomics: laying the groundwork for genetic disease modeling and targeting.
        Clin Chem Lab Med. 1998; 36: 523-527
        • Perkel J.M.
        Sequence analysis 101: a newbie's guide to crunching next-generation sequencing data.
        Scientist. 2011; 25: 60
        • Maxmen A.
        Harnessing the cloud.
        Scientist. 2010; 24: 71
        • Patterson T.A.
        • Lobenhofer E.K.
        • Fulmer-Smentek S.B.
        • et al.
        Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project.
        Nat Biotechnol. 2006; 24: 1140-1150
        • Haspel R.L.
        • Arnaout R.
        • Briere L.
        • et al.
        A call to action: training pathology residents in genomics and personalized medicine.
        Am J Clin Pathol. 2010; 133: 832-834