Advertisement
Review Article| Volume 31, ISSUE 2, P331-343, June 2011

Download started.

Ok

Molecular Aspects of Melanoma

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hanahan D.
        • Weinberg R.
        The hallmarks of cancer.
        Cell. 2000; 100: 57-70
        • Albino A.P.
        • Nanus D.M.
        • Mentle I.R.
        • et al.
        Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype.
        Oncogene. 1989; 4: 1363-1374
        • Demunter A.
        • Stas M.
        • Degreef H.
        • et al.
        Analysis of N- and K-ras mutations in the distinctive tumor progression phases of melanoma.
        J Invest Dermatol. 2001; 117: 1483-1489
        • Gorden A.
        • Osman I.
        • Gai W.
        • et al.
        Analysis of BRAF and N-RAS mutations in metastatic melanoma tissues.
        Cancer Res. 2003; 63: 3955-3957
        • Omholt K.
        • Karsberg S.
        • Platz A.
        • et al.
        Screening of N-ras codon 61 mutations in paired primary and metastatic cutaneous melanomas: mutations occur early and persist throughout tumor progression.
        Clin Cancer Res. 2002; 8: 3468-3474
        • Brose M.S.
        • Volpe P.
        • Feldman M.
        • et al.
        BRAF and RAS mutations in human lung cancer and melanoma.
        Cancer Res. 2002; 62: 6997-7000
        • Poynter J.N.
        • Elder J.T.
        • Fullen D.R.
        • et al.
        BRAF and NRAS mutations in melanoma and melanocytic nevi.
        Melanoma Res. 2006; 16: 267-273
        • Turner D.J.
        • Zirvi M.A.
        • Barany F.
        • et al.
        Detection of the BRAF V600E mutation in melanocytic lesions using the ligase detection reaction.
        J Cutan Pathol. 2005; 32: 334-339
        • Omholt K.
        • Platz A.
        • Kanter L.
        • et al.
        NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression.
        Clin Cancer Res. 2003; 9: 6483-6488
        • Uribe P.
        • Wistuba ii,
        • Gonzalez S.
        BRAF mutation: a frequent event in benign, atypical, and malignant melanocytic lesions of the skin.
        Am J Dermatopathol. 2003; 25: 365-370
        • Gray-Schopfer V.C.
        • da Rocha Dias S.
        • Marais R.
        The role of B-RAF in melanoma.
        Cancer Metastasis Rev. 2005; 24: 165-183
        • Dhomen N.
        • Marais R.
        New insight into BRAF mutations in cancer.
        Curr Opin Genet Dev. 2007; 17: 31-39
        • Libra M.
        • Malaponte G.
        • Bevelacqua V.
        • et al.
        Absence of BRAF gene mutation in non-melanoma skin tumors.
        Cell Cycle. 2006; 5: 968-970
        • Bauer J.
        • Curtin J.A.
        • Pinkel D.
        • et al.
        Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations.
        J Invest Dermatol. 2007; 127: 179-182
        • Carr J.
        • Mackie R.M.
        Point mutations in the N-ras oncogene in malignant melanoma and congenital naevi.
        Br J Dermatol. 1994; 131: 72-77
        • Kumar R.
        • Angelini S.
        • Snellman E.
        • et al.
        BRAF mutations are common somatic events in melanocytic nevi.
        J Invest Dermatol. 2004; 122: 342-348
        • Pollock P.M.
        • Harper U.L.
        • Hansen K.S.
        • et al.
        High frequency of BRAF mutations in nevi.
        Nat Genet. 2003; 33: 19-20
        • Saldanha G.
        • Purnell D.
        • Fletcher A.
        • et al.
        High BRAF mutation frequency does not characterize all melanocytic tumor types.
        Int J Cancer. 2004; 111: 705-710
        • Crowson A.N.
        • Magro C.M.
        • Sanchez-Carpintero I.
        • et al.
        The precursors of malignant melanoma.
        Recent Results Cancer Res. 2002; 160: 75-84
        • Marks R.
        • Dorevitch A.P.
        • Mason G.
        Do all melanomas come from “moles”? A study of the histological association between melanocytic naevi and melanoma.
        Australas J Dermatol. 1990; 31: 77-80
        • Maldonado J.L.
        • Timmerman L.
        • Fridlyand J.
        • et al.
        Mechanisms of cell-cycle arrest in Spitz nevi with constitutive activation of the MAP-kinase pathway.
        Am J Pathol. 2004; 164: 1783-1787
        • Curtin J.A.
        • Fridlyand J.
        • Kageshita T.
        • et al.
        Distinct sets of genetic alterations in melanoma.
        N Engl J Med. 2005; 353: 2135-2147
        • Cohen Y.
        • Rosenbaum E.
        • Begum S.
        • et al.
        Exon 15 BRAF mutations are uncommon in melanomas arising in nonsun-exposed sites.
        Clin Cancer Res. 2004; 10: 3444-3447
        • Edwards R.H.
        • Ward M.R.
        • Wu H.
        • et al.
        Absence of BRAF mutations in UV-protected mucosal melanomas.
        J Med Genet. 2004; 41: 270-272
        • Wong C.W.
        • Fan Y.S.
        • Chan T.L.
        • et al.
        BRAF and NRAS mutations are uncommon in melanomas arising in diverse internal organs.
        J Clin Pathol. 2005; 58: 640-644
        • Tsao H.
        • Goel V.
        • Wu H.
        • et al.
        Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma.
        J Invest Dermatol. 2004; 122: 337-341
        • Tsao H.
        • Zhang X.
        • Fowlkes K.
        • et al.
        Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines.
        Cancer Res. 2000; 60: 1800-1804
        • Wu H.
        • Goel V.
        • Haluska F.G.
        PTEN signaling pathways in melanoma.
        Oncogene. 2003; 22: 3113-3122
        • Daniotti M.
        • Oggionni M.
        • Ranzani T.
        • et al.
        BRAF alterations are associated with complex mutational profiles in malignant melanoma.
        Oncogene. 2004; 23: 5968-5977
        • Slominski A.
        • Wortsman J.
        • Carlson A.J.
        • et al.
        Malignant melanoma.
        Arch Pathol Lab Med. 2001; 125: 1295-1306
        • Ghiorzo P.
        • Villaggio B.
        • Sementa A.R.
        • et al.
        Expression and localization of mutant p16 proteins in melanocytic lesions from familial melanoma patients.
        Hum Pathol. 2004; 35: 25-33
        • Piccinin S.
        • Doglioni C.
        • Maestro R.
        • et al.
        p16/CDKN2 and CDK4 gene mutations in sporadic melanoma development and progression.
        Int J Cancer. 1997; 74: 26-30
        • Hussussian C.J.
        • Struewing J.P.
        • Goldstein A.M.
        • et al.
        Germline p16 mutations in familial melanoma.
        Nat Genet. 1994; 8: 15-21
        • Kamb A.
        • Shattuck-Eidens D.
        • Eeles R.
        • et al.
        Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus.
        Nat Genet. 1994; 8: 23-26
        • Miller A.J.
        • Mihm Jr., M.C.
        Melanoma.
        N Engl J Med. 2006; 355: 51-65
        • Reed J.A.
        • Loganzo Jr., F.
        • Shea C.R.
        • et al.
        Loss of expression of the p16/cyclin-dependent kinase inhibitor 2 tumor suppressor gene in melanocytic lesions correlates with invasive stage of tumor progression.
        Cancer Res. 1995; 55: 2713-2718
        • Grover R.
        • Chana J.S.
        • Wilson G.D.
        • et al.
        An analysis of p16 protein expression in sporadic malignant melanoma.
        Melanoma Res. 1998; 8: 267-272
        • Talve L.
        • Sauroja I.
        • Collan Y.
        • et al.
        Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage.
        Int J Cancer. 1997; 74: 255-259
        • Straume O.
        • Sviland L.
        • Akslen L.A.
        Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma.
        Clin Cancer Res. 2000; 6: 1845-1853
        • Keller-Melchior R.
        • Schmidt R.
        • Piepkorn M.
        Expression of the tumor suppressor gene product p16INK4 in benign and malignant melanocytic lesions.
        J Invest Dermatol. 1998; 110: 932-938
        • Sauter E.R.
        • Yeo U.C.
        • von Stemm A.
        • et al.
        Cyclin D1 is a candidate oncogene in cutaneous melanoma.
        Cancer Res. 2002; 62: 3200-3206
        • Michaloglou C.
        • Vredeveld L.C.
        • Soengas M.S.
        • et al.
        BRAFE600-associated senescence-like cell cycle arrest of human naevi.
        Nature. 2005; 436: 720-724
        • Serrano M.
        • Lin A.W.
        • McCurrach M.E.
        • et al.
        Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a.
        Cell. 1997; 88: 593-602
        • Gray-Schopfer V.
        • Cheong S.
        • Chong H.
        • et al.
        Cellular senescence in naevi and immortalisation in melanoma: a role for p16?.
        Br J Cancer. 2006; 95: 496-505
        • Bennett D.C.
        Human melanocyte senescence and melanoma susceptibility genes.
        Oncogene. 2003; 22: 3063-3069
        • Hocker T.L.
        • Singh M.K.
        • Tsao H.
        Melanoma genetics and therapeutic approaches in the 21st century: moving from the benchside to the bedside.
        J Invest Dermatol. 2008; 128: 2575-2595
        • Lara M.F.
        • Paramio J.M.
        The Rb family connects with the Tp53 family in skin carcinogenesis.
        Mol Carcinog. 2007; 46: 618-623
        • Davies H.
        • Bignell G.R.
        • Cox C.
        • et al.
        Mutations of the BRAF gene in human cancer.
        Nature. 2002; 417: 949-954
        • Patton E.E.
        • Widlund H.R.
        • Kutok J.L.
        • et al.
        BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma.
        Curr Biol. 2005; 15: 249-254
        • Chudnovsky Y.
        • Adams A.E.
        • Robbins P.B.
        • et al.
        Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.
        Nat Genet. 2005; 37: 745-749
        • Balch C.M.
        • Buzaid A.C.
        • Soong S.J.
        • et al.
        Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma.
        J Clin Oncol. 2001; 19: 3635-3648
        • Balch C.M.
        • Soong S.J.
        • Atkins M.B.
        • et al.
        An evidence-based staging system for cutaneous melanoma.
        CA Cancer J Clin. 2004; 54 ([quiz: 182–4]): 131-149
        • Kashiwagi H.
        • Uchida K.
        Genome-wide profiling of gene amplification and deletion in cancer.
        Hum Cell. 2000; 13: 135-141
        • Kim M.
        • Gans J.D.
        • Nogueira C.
        • et al.
        Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene.
        Cell. 2006; 125: 1269-1281
        • Garraway L.A.
        • Widlund H.R.
        • Rubin M.A.
        • et al.
        Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma.
        Nature. 2005; 436: 117-122
        • Levy C.
        • Khaled M.
        • Fisher D.E.
        MITF: master regulator of melanocyte development and melanoma oncogene.
        Trends Mol Med. 2006; 12: 406-414
        • Crowson A.N.
        • Magro C.M.
        • Mihm M.C.
        The melanocytic proliferations.
        Wiley-Blackwell, London2001
        • Troxel D.B.
        Medicolegal issues in surgical pathology.
        in: Weidner N. Modern surgical pathology. vol. 1. Saunders, 1st edition. Philadelphia2003: 139-149
        • Troxel D.B.
        Error in surgical pathology.
        Am J Surg Pathol. 2004; 28: 1092-1095
        • Cerroni L.
        • Kerl H.
        Tutorial on melanocytic lesions.
        Am J Dermatopathol. 2001; 23: 237-241
        • Farmer E.R.
        • Gonin R.
        • Hanna M.P.
        Discordance in the histopathologic diagnosis of melanoma and melanocytic nevi between expert pathologists.
        Hum Pathol. 1996; 27: 528-531
        • Barnhill R.L.
        • Argenyi Z.B.
        • From L.
        • et al.
        Atypical Spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome.
        Hum Pathol. 1999; 30: 513-520
        • Bastian B.C.
        • LeBoit P.E.
        • Pinkel D.
        Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features.
        Am J Pathol. 2000; 157: 967-972
        • Gill M.
        • Renwick N.
        • Silvers D.N.
        • et al.
        Lack of BRAF mutations in Spitz nevi.
        J Invest Dermatol. 2004; 122: 1325-1326
        • Takata M.
        • Lin J.
        • Takayanagi S.
        • et al.
        Genetic and epigenetic alterations in the differential diagnosis of malignant melanoma and spitzoid lesion.
        Br J Dermatol. 2007; 156: 1287-1294
        • van Dijk M.C.
        • Bernsen M.R.
        • Ruiter D.J.
        Analysis of mutations in B-RAF, N-RAS, and H-RAS genes in the differential diagnosis of Spitz nevus and spitzoid melanoma.
        Am J Surg Pathol. 2005; 29: 1145-1151
        • Bastian B.C.
        • LeBoit P.E.
        • Hamm H.
        • et al.
        Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization.
        Cancer Res. 1998; 58: 2170-2175
        • Bastian B.C.
        • Olshen A.B.
        • LeBoit P.E.
        • et al.
        Classifying melanocytic tumors based on DNA copy number changes.
        Am J Pathol. 2003; 163: 1765-1770
        • Gerami P.
        • Jewell S.S.
        • Morrison L.E.
        • et al.
        Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma.
        Am J Surg Pathol. 2009; 33: 1146-1156
        • Clark E.A.
        • Golub T.R.
        • Lander E.S.
        • et al.
        Genomic analysis of metastasis reveals an essential role for RhoC.
        Nature. 2000; 406: 532-535
        • Weeraratna A.T.
        • Jiang Y.
        • Hostetter G.
        • et al.
        Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma.
        Cancer Cell. 2002; 1: 279-288
        • Bittner M.
        • Meltzer P.
        • Chen Y.
        • et al.
        Molecular classification of cutaneous malignant melanoma by gene expression profiling.
        Nature. 2000; 406: 536-540
        • Da Forno P.D.
        • Fletcher A.
        • Pringle J.H.
        • et al.
        Understanding spitzoid tumours: new insights from molecular pathology.
        Br J Dermatol. 2008; 158: 4-14
        • Curtin J.A.
        • Busam K.
        • Pinkel D.
        • et al.
        Somatic activation of KIT in distinct subtypes of melanoma.
        J Clin Oncol. 2006; 24: 4340-4346
        • Van Raamsdonk C.D.
        • Bezrookove V.
        • Green G.
        • et al.
        Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi.
        Nature. 2009; 457: 599-602
        • Zembowicz A.
        • Knoepp S.M.
        • Bei T.
        • et al.
        Loss of expression of protein kinase a regulatory subunit 1alpha in pigmented epithelioid melanocytoma but not in melanoma or other melanocytic lesions.
        Am J Surg Pathol. 2007; 31: 1764-1775