Advertisement
Review Article| Volume 31, ISSUE 1, P109-123, March 2011

Download started.

Ok

The Regenerative Medicine Laboratory: Facilitating Stem Cell Therapy for Equine Disease

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fortier L.A.
        • Smith R.K.
        Regenerative medicine for tendinous and ligamentous injuries of sport horses.
        Vet Clin North Am Equine Pract. 2008; 24: 191-201
        • Paris D.B.
        • Stout T.A.
        Equine embryos and embryonic stem cells: defining reliable markers of pluripotency.
        Theriogenology. 2010; 74: 516-524
        • Arnhold S.J.
        • Goletz I.
        • Klein H.
        • et al.
        Isolation and characterization of bone marrow-derived equine mesenchymal stem cells.
        Am J Vet Res. 2007; 68: 1095-1105
        • Fortier L.A.
        • Nixon A.J.
        • Williams J.
        • et al.
        Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells.
        Am J Vet Res. 1998; 59: 1182-1187
        • Vidal M.A.
        • Kilroy G.E.
        • Johnson J.R.
        • et al.
        Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity.
        Vet Surg. 2006; 35: 601-610
        • Colleoni S.
        • Bottani E.
        • Tessaro I.
        • et al.
        Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor.
        Vet Res Commun. 2009; 33: 811-821
        • de Mattos Carvalho A.
        • Alves A.L.
        • Golim M.A.
        • et al.
        Isolation and immunophenotypic characterization of mesenchymal stem cells derived from equine species adipose tissue.
        Vet Immunol Immunopathol. 2009; 132: 303-306
        • Vidal M.A.
        • Kilroy G.E.
        • Lopez M.J.
        • et al.
        Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells.
        Vet Surg. 2007; 36: 613-622
        • Bartholomew S.
        • Owens S.D.
        • Ferraro G.L.
        • et al.
        Collection of equine cord blood and placental tissues in 40 thoroughbred mares.
        Equine Vet J. 2009; 41: 724-728
        • Cremonesi F.
        • Violini S.
        • Lange Consiglio A.
        • et al.
        Isolation, in vitro culture and characterization of foal umbilical cord stem cells at birth.
        Vet Res Commun. 2008; 32: S139-S142
        • Koch T.G.
        • Heerkens T.
        • Thomsen P.D.
        • et al.
        Isolation of mesenchymal stem cells from equine umbilical cord blood.
        BMC Biotechnol. 2007; 7: 26
        • Koch T.G.
        • Thomsen P.D.
        • Betts D.H.
        Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells.
        Cytotherapy. 2009; 11: 443-447
        • Schuh E.M.
        • Friedman M.S.
        • Carrade D.D.
        • et al.
        Identification of variables that optimize isolation and culture of multipotent mesenchymal stem cells from equine umbilical-cord blood.
        Am J Vet Res. 2009; 70: 1526-1535
        • Passeri S.
        • Nocchi F.
        • Lamanna R.
        • et al.
        Isolation and expansion of equine umbilical cord-derived matrix cells (EUCMCs).
        Cell Biol Int. 2009; 33: 100-105
        • Toupadakis C.A.
        • Wong A.
        • Genetos D.C.
        • et al.
        Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue.
        Am J Vet Res. 2010; 71: 1237-1245
        • Ishihara A.
        • Zachos T.A.
        • Bartlett J.S.
        • et al.
        Evaluation of permissiveness and cytotoxic effects in equine chondrocytes, synovial cells, and stem cells in response to infection with adenovirus 5 vectors for gene delivery.
        Am J Vet Res. 2006; 67: 1145-1155
        • Carpenter R.S.
        • Goodrich L.R.
        • Frisbie D.D.
        • et al.
        Osteoblastic differentiation of human and equine adult bone marrow-derived mesenchymal stem cells when BMP-2 or BMP-7 homodimer genetic modification is compared to BMP-2/7 heterodimer genetic modification in the presence and absence of dexamethasone.
        J Orthop Res. 2010; 28: 1330-1337
        • Murray S.J.
        • Santangelo K.S.
        • Bertone A.L.
        Evaluation of early cellular influences of bone morphogenetic proteins 12 and 2 on equine superficial digital flexor tenocytes and bone marrow-derived mesenchymal stem cells in vitro.
        Am J Vet Res. 2010; 71: 103-114
        • Schnabel L.V.
        • Lynch M.E.
        • van der Meulen M.C.
        • et al.
        Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons.
        J Orthop Res. 2009; 27: 1392-1398
        • Vidal M.A.
        • Robinson S.O.
        • Lopez M.J.
        • et al.
        Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow.
        Vet Surg. 2008; 37: 713-724
        • Radcliffe C.H.
        • Flaminio M.J.
        • Fortier L.A.
        Temporal analysis of equine bone marrow aspirate during establishment of putative mesenchymal progenitor cell populations.
        Stem Cells Dev. 2010; 19: 269-282
        • Carrade D.D.
        • Owens S.D.
        • Galuppo L.D.
        • et al.
        Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses.
        Cytotherapy. 2010; ([Epub ahead of print])
        • Reed S.A.
        • Johnson S.E.
        Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types.
        J Cell Physiol. 2008; 215: 329-336
        • Violini S.
        • Ramelli P.
        • Pisani L.F.
        • et al.
        Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12.
        BMC Cell Biol. 2009; 10: 29
        • Riekstina U.
        • Cakstina I.
        • Parfejevs V.
        • et al.
        Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis.
        Stem Cell Rev. 2009; 5: 378-386
        • Riordan N.H.
        • Ichim T.E.
        • Min W.P.
        • et al.
        Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis.
        J Transl Med. 2009; 7: 29
        • Alison M.
        • Wobus A.M.
        • Boheler K.R.
        Stem cells.
        Springer, Berlin2006
        • Marion N.
        • Mao J.
        Mesenchymal stem cells and tissue engineering. Methods in enzymology. vol. 420. Elsevier Inc, New York2006 (p. 339–44)
        • Crovace A.
        • Lacitignola L.
        • De Siena R.
        • et al.
        Cell therapy for tendon repair in horses: an experimental study.
        Vet Res Commun. 2007; 31: 281-283
        • Lacitignola L.
        • Crovace A.
        • Rossi G.
        • et al.
        Cell therapy for tendinitis, experimental and clinical report.
        Vet Res Commun. 2008; 32: S33-S38
        • Frisbie D.D.
        • Kisiday J.D.
        • Kawcak C.E.
        • et al.
        Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis.
        J Orthop Res. 2009; 27: 1675-1680
        • Murphy J.M.
        • Fink D.J.
        • Hunziker E.B.
        • et al.
        Stem cell therapy in a caprine model of osteoarthritis.
        Arthritis Rheum. 2003; 48: 3464-3474
        • Quintavalla J.
        • Uziel-Fusi S.
        • Yin J.
        • et al.
        Fluorescently labeled mesenchymal stem cells (MSCs) maintain multilineage potential and can be detected following implantation into articular cartilage defects.
        Biomaterials. 2002; 23: 109-119
        • Liechty K.W.
        • MacKenzie T.C.
        • Shaaban A.F.
        • et al.
        Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep.
        Nat Med. 2000; 6: 1282-1286
        • Worster A.A.
        • Nixon A.J.
        • Brower-Toland B.D.
        • et al.
        Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells.
        Am J Vet Res. 2000; 61: 1003-1010
        • Berg L.
        • Koch T.
        • Heerkens T.
        • et al.
        Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood.
        Vet Comp Orthop Traumatol. 2009; 22: 363-370
        • Caplan A.I.
        Why are MSCs therapeutic? New data: new insight.
        J Pathol. 2009; 217: 318-324
        • Noel D.
        • Djouad F.
        • Bouffi C.
        • et al.
        Multipotent mesenchymal stromal cells and immune tolerance.
        Leuk Lymphoma. 2007; 48: 1283-1289
        • Kode J.A.
        • Mukherjee S.
        • Joglekar M.V.
        • et al.
        Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration.
        Cytotherapy. 2009; 11: 377-391
        • Wang L.
        • Zhao R.C.
        Mesenchymal stem cells targeting the GVHD.
        Sci China C Life Sci. 2009; 52: 603-609
        • Weng J.Y.
        • Du X.
        • Geng S.X.
        • et al.
        Mesenchymal stem cell as salvage treatment for refractory chronic GVHD.
        Bone Marrow Transplant. 2010; 45: 1732-1740
        • Zhang X.
        • Jiao C.
        • Zhao S.
        Role of mesenchymal stem cells in immunological rejection of organ transplantation.
        Stem Cell Rev. 2009; 5: 402-409
        • Zhao S.
        • Wehner R.
        • Bornhauser M.
        • et al.
        Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders.
        Stem Cells Dev. 2010; 19: 607-614
        • Guest D.J.
        • Smith M.R.
        • Allen W.R.
        Monitoring the fate of autologous and allogeneic mesenchymal progenitor cells injected into the superficial digital flexor tendon of horses: preliminary study.
        Equine Vet J. 2008; 40: 178-181
        • Krampera M.
        • Pasini A.
        • Pizzolo G.
        • et al.
        Regenerative and immunomodulatory potential of mesenchymal stem cells.
        Curr Opin Pharmacol. 2006; 6: 435-441
        • Krampera M.
        • Franchini M.
        • Pizzolo G.
        • et al.
        Mesenchymal stem cells: from biology to clinical use.
        Blood Transfus. 2007; 5: 120-129
        • Le Blanc K.
        Immunomodulatory effects of fetal and adult mesenchymal stem cells.
        Cytotherapy. 2003; 5: 485-489
        • Krampera M.
        • Cosmi L.
        • Angeli R.
        • et al.
        Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells.
        Stem Cells. 2006; 24: 386-398
        • Stagg J.
        • Galipeau J.
        Immune plasticity of bone marrow-derived mesenchymal stromal cells.
        Handb Exp Pharmacol. 2007; 180: 45-66
        • Egermann M.
        • Goldhahn J.
        • Schneider E.
        Animal models for fracture treatment in osteoporosis.
        Osteoporos Int. 2005; 16: S129-S138
      1. Food and Drug Administration. Guidelines for preclinical and clinical evaluation of agents used in the prevention or treatment of postmenopausal osteoporosis.
        FDA, Division of Metabolism and Endocrine Drug Products, Washington, DC1994
        • da Silva Meirelles L.
        • Sand T.T.
        • Harman R.J.
        • et al.
        MSC frequency correlates with blood vessel density in equine adipose tissue.
        Tissue Eng Part A. 2009; 15: 221-229
        • Del Bue M.
        • Ricco S.
        • Ramoni R.
        • et al.
        Equine adipose-tissue derived mesenchymal stem cells and platelet concentrates: their association in vitro and in vivo.
        Vet Res Commun. 2008; 32: S51-S55
        • Kisiday J.D.
        • Kopesky P.W.
        • Evans C.H.
        • et al.
        Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures.
        J Orthop Res. 2008; 26: 322-331
        • Neuhuber B.
        • Swanger S.A.
        • Howard L.
        • et al.
        Effects of plating density and culture time on bone marrow stromal cell characteristics.
        Exp Hematol. 2008; 36: 1176-1185
        • Loring J.
        • Wesselschmidt R.
        • Schwartz P.
        Human stem cell manual, a laboratory guide.
        Academic Press, Elsevier Inc, New York2007
        • Stewart A.A.
        • Byron C.R.
        • Pondenis H.
        • et al.
        Effect of fibroblast growth factor-2 on equine mesenchymal stem cell monolayer expansion and chondrogenesis.
        Am J Vet Res. 2007; 68: 941-945
        • Stewart A.A.
        • Byron C.R.
        • Pondenis H.C.
        • et al.
        Effect of dexamethasone supplementation on chondrogenesis of equine mesenchymal stem cells.
        Am J Vet Res. 2008; 69: 1013-1021
        • Martinello T.
        • Bronzini I.
        • Maccatrozzo L.
        • et al.
        Cryopreservation does not affect the stem characteristics of multipotent cells isolated from equine peripheral blood.
        Tissue Eng Part C Methods. 2010; 16: 771-781
        • Rubinstein P.
        • Dobrila L.
        • Rosenfield R.E.
        • et al.
        Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution.
        Proc Natl Acad Sci U S A. 1995; 92: 10119-10122