Review Article| Volume 30, ISSUE 2, P443-452, June 2010

Current and Future Cellular Transfusion Products

  • Monique P. Gelderman
    Corresponding author.
    Laboratory of Cellular Hematology, Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, HFM-335, Rockville, MD 20852-1448, USA
    Search for articles by this author
  • Jaroslav G. Vostal
    Laboratory of Cellular Hematology, Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, HFM-335, Rockville, MD 20852-1448, USA
    Search for articles by this author


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • US Department of Health and Human Services
        The 2007 nationwide blood collection and utilization survey report.
        DHHS, Washington, DC2007 (Available at:) (Accessed March 17, 2010)
        • Mollison P.L.
        • Engelfreit C.P.
        • Contreras M.
        Mollison's blood transfusion in clinical medicine.
        in: Klein H.G. Anstee D.J. Drug discovery today technologies. 11th edition. Massachusetts: Blackwell Publishing, 2005: 365-366
      1. 91st Blood Products Advisory Committee meeting.
        (Available at:)
        • Tinmouth A.
        • Chin-Yee I.
        The clinical consequences of the red cell storage lesion.
        Transfus Med Rev. 2001; 15: 91-107
        • Koch C.G.
        • Li L.
        • Sessler D.I.
        • et al.
        Duration of red-cell storage and complications after cardiac surgery.
        N Engl J Med. 2008; 358: 1229-1239
        • Weinberg J.A.
        • McGwin Jr., G.
        • Marques M.B.
        • et al.
        Transfusions in the less severely injured: does age of transfused blood affect outcomes?.
        J Trauma. 2008; 65: 794-798
        • Rawn J.
        The silent risks of blood transfusion.
        Curr Opin Anaesthesiol. 2008; 21: 664-668
        • Fergusson D.
        • Hutton B.
        • Hogan D.L.
        • et al.
        The age of red blood cells in premature infants (ARIPI) randomized controlled trial: study design.
        Transfus Med Rev. 2009; 23: 55-61
        • Steiner M.E.
        • Stowell C.
        Does red blood cell storage affect clinical outcome? When in doubt, do the experiment.
        Transfusion. 2009; 49: 1286-1290
      2. Roback JD, Combs MR, Grossman BJ, et al, editors. AABB technical manual. 16th edition. Bethesda (MD): AABB; 2008. p. 200–1, 285.

        • AABB American Red Cross America's Blood Centers
        • The Armed Services Blood Program
        Circular of information for the use of human blood and blood components.
        AABB, Bethesda (MD)2009 (Available at:) (Accessed March 17, 2010)
        • Yoshida T.
        • AuBuchon J.P.
        • Tryzelaar L.
        • et al.
        Extended storage of red blood cells under anaerobic conditions.
        Vox Sang. 2007; 92: 22-31
        • Yoshida T.
        • AuBuchon J.P.
        • Dumont L.J.
        • et al.
        The effects of additive solution pH and metabolic rejuvenation on anaerobic storage of red cells.
        Transfusion. 2008; 48: 2096-2105
        • Dumont L.J.
        • Yoshida T.
        • AuBuchon J.P.
        Anaerobic storage of red blood cells in a novel additive solution improves in vivo recovery.
        Transfusion. 2009; 49: 458-464
        • Olivier E.N.
        • Qiu C.
        • Velho M.
        • et al.
        Large-scale production of embryonic red blood cells from human embryonic stem cells.
        Exp Hematol. 2006; 34: 1635-1642
        • Lu S.J.
        • Feng Q.
        • Park J.S.
        • et al.
        Biological properties and enucleation of red blood cells from human embryonic stem cells.
        Blood. 2008; 112: 4475-4484
        • Douay L.
        • Lapillonne H.
        • Turhan A.G.
        Stem cells—a source of adult red blood cells for transfusion purposes: present and future.
        Crit Care Clin. 2009; 25: 383-398
        • Olsson M.L.
        • Clausen H.
        Modifying the red cell surface: towards an ABO-universal blood supply.
        Br J Haematol. 2008; 140: 3-12
        • Bihl F.
        • Castelli D.
        • Marincola F.
        • et al.
        Transfusion-transmitted infections.
        J Transl Med. 2007; 5: 25
        • Benjamin R.J.
        • McCullough J.
        • Mintz P.D.
        • et al.
        Therapeutic efficacy and safety of red blood cells treated with a chemical process (S-303) for pathogen inactivation: a phase III clinical trial in cardiac surgery patients.
        Transfusion. 2005; 45: 1739-1749
        • Rios J.A.
        • Hambleton J.
        • Viele M.
        • et al.
        Viability of red cells prepared with S-303 pathogen inactivation treatment.
        Transfusion. 2006; 46: 1778-1786
        • Solheim B.G.
        Pathogen reduction of blood components.
        Transfus Apher Sci. 2008; 39: 75-82
        • Cancelas J.A.
        • Dumont L.
        • Herschel L.
        • et al.
        A randomized, controlled, 2-period crossover study of recovery and lifespan of radiolabeled autologous 35-day-old red blood cells prepared with a modified S-303 treatment for pathogen inactivation.
        Vox Sang. 2008; 95 (9): 8
        • Allain J.P.
        • Bianco C.
        • Blajchman M.A.
        • et al.
        Protecting the blood supply from emerging pathogens: the role of pathogen inactivation.
        Transfus Med Rev. 2005; 19: 110-126
        • Jennings L.K.
        Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis.
        Thromb Haemost. 2009; 102: 248-257
        • Gaydos L.A.
        • Freireich E.J.
        • Mantel N.
        The quantitative relation between platelet count and hemorrhage in patients with acute leukemia.
        N Engl J Med. 1962; 266: 905-909
        • Truilzi D.J.
        Transfusion-related acute lung injury: current concepts for the clinician.
        Anesth Analg. 2009; 108: 770-776
        • Vamvakas E.C.
        Relative safety of pooled whole blood-derived versus single-donor (apheresis) platelets in the United States: a systemic review of disparate risks.
        Transfusion. 2009; 49: 2743-2758
        • Dumont L.J.
        • Kleinman S.
        • Murphy J.R.
        • et al.
        Screening of single-donor apheresis platelets for bacterial contamination: the PASSPORT study results.
        Transfusion. 2009; ([Epub ahead of print])
        • Murphy W.G.
        • Foley M.
        • Doherty C.
        • et al.
        Screening platelet concentrates for bacterial contamination: low numbers of bacteria and slow growth in contaminated units mandate an alternative approach to product safety.
        Vox Sang. 2008; 95: 13-19
        • Eder A.F.
        • Kennedy J.M.
        • Dy B.A.
        • et al.
        Limiting and detecting bacterial contamination of apheresis platelets: inlet-line diversion and increased culture volume improve component safety.
        Transfusion. 2009; 49: 1554-1563
        • Vostal J.
        • Mondoro T.
        Liquid cold storage of platelets: a revitalized possible alternative for limiting bacterial contamination of platelet products.
        Transfus Med Rev. 1997; 11: 286-295
        • Rumjantseva V.
        • Grewal P.K.
        • Wandall H.H.
        • et al.
        Dual roles for hepatic lectin receptors in the clearance of chilled platelets.
        Nat Med. 2009; 15: 1273-1280
        • Solheim B.G.
        • Flesland O.
        • Seghatchian J.
        • et al.
        Clinical implications of red blood cell and platelet storage lesions: an overview.
        Transfus Apher Sci. 2004; 31: 185-189
        • Lin L.
        • Dikeman R.
        • Molini B.
        • et al.
        Photochemical treatment of platelet concentrates with amotosalen and long-wavelength ultraviolet light inactivates a broad spectrum of pathogenic bacteria.
        Transfusion. 2004; 44: 1496-1504
        • Ruane P.H.
        • Edrich R.
        • Gampp D.
        • et al.
        Photochemical inactivation of selected viruses and bacteria in platelet concentrates using riboflavin and light.
        Transfusion. 2004; 44: 877-885
        • van Marwijk Kooy M.
        • Akkerman J.W.
        • van Asbeck S.
        • et al.
        UVB radiation exposes fibrinogen binding sites on platelets by activating protein kinase C via reactive oxygen species.
        Br J Haematol. 1993; 83: 253-258
      3. 96th Blood Products Advisory Committee Meeting, November 2009.
        (Available at:) (Accessed March 17, 2010)
        • Klein H.G.
        • Glynn S.A.
        • Ness P.M.
        • et al.
        Research opportunities for pathogen reduction/inactivation of blood components: summary of an NHLBI workshop.
        Transfusion. 2009; 49: 1262-1268
        • Bode A.P.
        • Fischer T.H.
        Lyophilized platelets: fifty years in the making.
        Artif Cells Blood Substit Immobil Biotechnol. 2007; 35: 125-133
        • Graham S.S.
        • Gonchoroff N.J.
        • Miller J.L.
        Infusible platelet membranes retain partial functionality of the platelet GPIb/IX/V receptor complex.
        Am J Clin Pathol. 2001; 115: 144-147
        • Coller B.S.
        • Springer K.T.
        • Beer J.H.
        • et al.
        Thromboerythrocytes. In vitro studies of a potential autologous, semi-artificial alternative to platelet transfusions.
        J Clin Invest. 1992; 89: 546-555
        • Levi M.
        • Friederich P.W.
        • Middleton S.
        • et al.
        Fibrinogen-coated albumin microcapsules reduce bleeding in severely thrombocytopenic rabbits.
        Nat Med. 1999; 5: 107-111
        • Olsen A.L.
        • Stachura D.L.
        • Weiss M.J.
        Designer blood: creating hematopoietic lineages from embryonic stem cells.
        Blood. 2006; 107: 1265-1275
        • Takayama N.
        • Nishikii H.
        • Usui J.
        • et al.
        Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors.
        Blood. 2008; 111: 5298-5306
        • Vostal J.G.
        Efficacy evaluation of current and future platelet transfusion products.
        J Trauma. 2006; 60: S78-S82
      4. Draft guidance for industry for platelet testing and evaluation of platelet substitute products. 1999.
        (Available at:) (Accessed March 17, 2010)
      5. Code of Federal Regulations, 21 C.F.R, Section 640.24. Washington, DC; U.S. Government Printing Office. Available at: Accessed February 12, 2010.

      6. Draft guidance for industry: pre-storage leukocyte reduction of whole blood and blood components intended for transfusion. 2001.
        (Available at:) (Accessed March 17, 2010)
      7. 80th Blood Products Advisory Committee Meeting, July 2004.
        (Available at:) (Accessed March 17, 2010)
        • McCullough J.
        • Vesole D.H.
        • Benjamin R.J.
        • et al.
        Therapeutic efficacy and safety of platelets treated with a photochemical process for pathogen inactivation: the SPRINT trial.
        Blood. 2004; 104: 1534-1541
        • Heddle N.M.
        • Cook R.J.
        • Tinmouth A.
        • et al.
        A randomized controlled trial comparing standard- and low-dose strategies for transfusion of platelets (SToP) to patients with thrombocytopenia.
        Blood. 2009; 113: 1564-1573
        • Atreya C.D.
        • Epstein J.S.
        Blood safety: opportunities and challenges addressed through critical path research at FDA.
        in: Lam K. Timmerman H. Drug discovery today technologies. London (UK): Elsevier Ltd, 2007: 51-54
      8. FDA critical path initiative.
        (Available at:) (Accessed March 17, 2010)
        • Woodcock J.
        • Woosley R.
        The FDA critical path initiative and its influence on new drug development.
        Annu Rev Med. 2008; 59: 1-12