Review Article| Volume 30, ISSUE 2, P419-429, June 2010

Download started.


Future of Molecular Testing for Red Blood Cell Antigens


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Garratty G, Reid M, Westhoff C, editors. Proceedings of a workshop on molecular methods in immunohematology. Transfusion 2007;47(Suppl 1):S1–100S.

        • Moulds J.M.
        • Castilho L.
        • Hashmi G.
        • et al.
        Standards for molecular testing for red cell, platelet, and neutrophil antigens.
        1st edition. AABB, Bethesda (MD)2008
        • Daniels G.
        • Castilho L.
        • Flegel W.A.
        • et al.
        International Society of Blood Transfusion committee on terminology for red cell surface antigens: Macao report.
        Vox Sang. 2009; 96: 153-156
        • Wagner F.F.
        • Bittne J.
        • Doscher A.
        • et al.
        Mid-throughput blood group phenotype prediction by pooled capillary electrophoresis.
        Transfusion. 2008; 48: 1169-1173
        • Wu Y.Y.
        • Csako G.
        Rapid and/or high-throughput genotyping for red blood cell, platelet and leukocyte antigens, and forensic applications.
        Clin Chim Acta. 2006; 363: 165-176
        • Polin H.
        • Danzer M.
        • Proll J.
        • et al.
        Introduction of a real-time based blood group genotyping approach.
        Vox Sang. 2008; 95: 125-130
        • Novaretti M.
        • Dorlhiac-Llacer P.
        • Chamone D.
        • et al.
        Application of real-time PCR and melting curve analysis in rapid Diego blood group genotyping.
        Transfusion. 2008; 48: 195A
        • Novaretti M.
        • Ruiz A.
        • Bonifacio S.L.
        • et al.
        Evaluation of PCR-ASP and real time PCR using fluorescent dye and melting curve analysis for yt(YT) blood group genotyping.
        Transfusion. 2009; 49: 134A
        • Ansart-Pirenne H.
        • Martin-Blanc S.
        • Lepennec P.-Y.
        • et al.
        FY*X real-time polymerase chain reaction with melting curve analysis associated with a complete one-step real-time FY genotyping.
        Vox Sang. 2007; 92: 142-147
        • van Dronen J.
        • Beckers E.A.M.
        • Sintnocolaas K.
        • et al.
        Rapid genotyping of blood group systems using the pyrosequencing technique.
        Vox Sang. 2002; 83: 104-105
        • Beiboer S.H.W.
        • Wieringa-Jelsma T.
        • Maaskant-van Wijk P.A.
        • et al.
        Rapid genotyping of blood group antigens by multiplex polymerase chain reaction and DNA microarray hybridization.
        Transfusion. 2005; 45: 667-679
        • Hashmi G.
        • Shariff T.
        • Seul M.
        • et al.
        A flexible array format for large-scale, rapid blood group DNA typing.
        Transfusion. 2005; 45: 680-688
        • Hashmi G.
        • Shariff T.
        • Zhang Y.
        • et al.
        Determination of 24 minor red blood cell antigens for more than 2000 blood donors by high-throughput DNA analysis.
        Transfusion. 2007; 47: 736-747
        • Perreault J.
        • Lavoie J.
        • Painchaud P.
        • et al.
        Set-up and routine use of a database of 10,555 genotyped blood donors to facilitate the screening of compatible blood components for alloimmunized patients.
        Vox Sang. 2009; 97: 61-68
        • Denomme G.A.
        • Van Oene M.
        High-throughput multiplex single-nucleotide polymorphism analysis for red cell and platelet antigen genotypes.
        Transfusion. 2009; 45: 660-666
        • Veldhuisen B.
        • van der Schoot C.E.
        • De Haas M.
        • et al.
        Blood group genotyping: from patient to high through-put donor screening.
        Vox Sang. 2009; 97: 198-206
        • Karpasitou K.
        • Drago F.
        • Crespiatico L.
        • et al.
        Blood group genotyping for Jka/Jkb, Fya/Fyb, S/s, Kpa/Kpb, Jsa/Jsb, Coa/Cob, and Lua/Lub with microarray beads.
        Transfusion. 2008; 48: 505-512
        • Hopp K.
        • Weber K.
        • Bellissimo D.
        • et al.
        Development of a new blood group genotyping platform using nanofluidic PCR.
        Transfusion. 2008; 48: 23A
        • Hopp K.
        • Weber K.
        • Bellissimo D.
        • et al.
        High-throughput red blood cell antigen genotyping using a nanofluidic real-time PCR polymerase chain reaction platform.
        Transfusion. 2010; 50: 40-46
        • Garritsen H.S.P.
        • Fan A.X.-C.
        • Lenz D.
        • et al.
        Molecular diagnostics in transfusion medicine: In capillary, on a chip, in silico, or in flight.
        Transfus Med Hemother. 2009; 36: 181-187
        • Grill S.
        • Banzola I.
        • Li Y.
        • et al.
        High throughput non-invasive determination of fetal rhesus D status using automated extraction of cell-free fetal DNA in maternal plasma and mass spectrometry.
        Arch Immunol Ther Exp. 2009; 279: 533-537
        • Ferri G.
        • Bini C.
        • Ceccardi S.
        • et al.
        ABO genotyping by minisequencing analysis.
        Transfusion. 2004; 44: 943-944
        • Palacajornsuk P.
        • Halter C.
        • Isakova V.
        • et al.
        Detection of blood group genes using multiple SNaPshot method.
        Transfusion. 2009; 49: 740-749
        • Anstee D.J.
        Red cell genotyping and the future of pretransfusion testing.
        Blood. 2009; 114: 248-256
        • Castro O.
        • Sandler S.G.
        • Houston-Yu P.
        • et al.
        Predicting the effect of transfusing only phenotype matched RBCs to patients with sickle cell disease: theoretical and practical implications.
        Transfusion. 2002; 42: 684-690
        • Allen T.I.
        • Billingsley K.L.
        • Slaughter J.
        • et al.
        Red cell genotyping: a cost effective approach to screening large numbers of donors.
        Transfusion. 2009; 49: 135A
        • Abumuhor I.A.
        • Klapper E.B.
        • Smith L.E.
        The value of maintaining special screened RBC inventory by molecular testing in a tertiary care hospital.
        Transfusion. 2009; 49: 242A
        • Aygun B.
        • Padmanabhan S.
        • Paley C.
        Clinical significance of RBC alloantibodies and autoantibodies in sickle cell patients who received transfusions.
        Transfusion. 2002; 42: 37-43
        • Vichinsky E.P.
        • Luban N.L.C.
        • Wright E.
        • et al.
        Prospective RBC phenotype matching in a stroke-prevention trial in sickle cell anemia: a multicenter transfusion trial.
        Transfusion. 2001; 41: 1086-1092
        • Petz L.
        • Garratty G.
        Immune hemolytic anemias.
        Churchill Livingstone, Philadelphia2004 (p. 379)
        • Reesink H.W.
        • Engelfriet C.P.
        • Schennach H.
        • et al.
        Donors with a rare pheno (geno) type.
        Vox Sang. 2005; 95: 236-253
      2. Klapper E, Zhang Y, Figueroa P, et al. Toward extended phenotype matching: a new operational paradigm for the transfusion service. Transfusion 2009. [Epub ahead of print].