Advertisement
Review Article| Volume 30, ISSUE 2, P365-380, June 2010

Genetically Engineered Pigs as a Source for Clinical Red Blood Cell Transfusion

Published:April 28, 2010DOI:https://doi.org/10.1016/j.cll.2010.02.001

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Olsson M.L.
        • Clausen H.
        Modifying the red cell surface: towards an ABO-universal blood supply.
        Br J Haematol. 2008; 140: 3-12
        • Whitaker B.
        • Sullivan M.
        The 2007 nationwide blood collection and utilization survey report.
        Department of Health and Human Services, Washington, DC2008
        • Johnstone J.E.
        • Maclaren L.A.
        • Doucet J.
        • et al.
        In vitro studies regarding the feasibility of bovine erythrocyte xenotransfusion.
        Xenotransplantation. 2004; 11: 11-17
        • Cooper D.K.C.
        • Gollackner B.
        • Sachs D.H.
        Will the pig solve the transplantation backlog?.
        Annu Rev Med. 2002; 53: 133-147
        • Cooper D.K.C.
        • Lanza R.P.
        Xeno – the promise of transplanting animal organs into humans.
        Oxford University Press, New York2000 (p. 1–274)
        • Roux F.A.
        • Sai P.
        • Deschamps J.Y.
        Xenotransfusions, past and present.
        Xenotransplantation. 2007; 14: 208-216
        • Lower R.
        The method observed in transfusing the blood out of one live animal into another. Monday December 17, 1666.
        Philos Trans R Soc Lond A. 1666; 1: 353-358
        • Lower R.
        Tractatus de corde.
        Danielem Elzevirium, London1669
        • Denis J.B.
        Copie d'une lettre e crite a Monsieur de Montmor touchant une nouvelle maniere de gue rir plusieurs maladies par la transfusion du sang, confirme e par deux experiences faites sur des hommes. Le 15 juin 1667.
        Jean Cusson, Paris1667
        • Schmidt P.J.
        • Leacock A.G.
        Forgotten transfusion history: John Leacock of Barbados.
        BMJ. 2002; 325: 1485-1487
        • Blundell J.
        Successful case of transfusion.
        Lancet. 1829; 1: 431-432
        • Landsteiner K.
        Zur Kentniss der antifermentativen lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe.
        Zentralblatt für Bakteriologie. 1900; 28 ([in German]): 357-362
        • Pond W.G.
        • Houpt K.A.
        The biology of the pig.
        Comstock Pub Associates, Ithaca (NY)1978
        • Jandl J.H.
        Blood: textbook of hematology.
        Little, Brown, Boston1996
        • Zhu A.
        Introduction to porcine red blood cells: implications for xenotransfusion.
        Semin Hematol. 2000; 37: 143-149
        • Cooper D.K.C.
        Porcine red blood cells as a source of blood transfusion in humans.
        Xenotransplantation. 2003; 10: 384-386
        • Eckermann J.M.
        • Buhler L.H.
        • Zhu A.
        • et al.
        Initial investigation of the potential of modified porcine erythrocytes for transfusion in primates.
        Xenotransplantation. 2004; 11: 18-26
        • Sako F.
        • Gasa S.
        • Makita A.
        • et al.
        Human blood group glycosphingolipids of porcine erythrocytes.
        Arch Biochem Biophys. 1990; 278: 228-237
        • Smith D.M.
        • Newhouse M.
        • Naziruddin B.
        • et al.
        Blood groups and transfusions in pigs.
        Xenotransplantation. 2006; 13: 186-194
        • Yamamoto F.
        • Yamamoto M.
        Molecular genetic basis of porcine histo-blood group AO system.
        Blood. 2001; 97: 3308-3310
        • Katz D.S.
        • White S.P.
        • Huang W.
        • et al.
        Structure determination of aquomet porcine hemoglobin at 2.8A resolution.
        J Mol Biol. 1994; 244: 541-553
        • Rao M.J.
        • Schneider K.
        • Chait B.T.
        • et al.
        Recombinant hemoglobin A produced in transgenic swine: structural equivalence with human hemoglobin A.
        Artif Cells Blood Substit Immobil Biotechnol. 1994; 22: 695-700
        • Oostingh G.J.
        • Davies H.F.S.
        • Tang K.C.G.
        • et al.
        Sensitization to swine leukocyte antigens in patients with broadly reactive HLA specific antibodies.
        Am J Transplant. 2002; 2: 267-273
        • Patience C.
        • Takeuchi Y.
        • Weiss R.A.
        Zoonosis in xenotransplantation.
        Curr Opin Immunol. 1998; 10: 539-542
        • Blusch J.H.
        • Patience C.
        • Martin U.
        Pig endogenous retroviruses and xenotransplantation.
        Xenotransplantation. 2002; 9: 242-251
        • Roux F.A.
        • Sai P.
        • Deschamps J.-Y.
        Some ethical issues regarding xenotransfusion.
        Xenotransplantation. 2007; 14: 217-221
        • Galili U.
        • Shohet S.B.
        • Kobrin E.
        • et al.
        Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells.
        J Biol Chem. 1988; 263: 17755-17762
        • Cooper D.K.C.
        Depletion of natural antibodies in nonhuman primates – a step towards successful discordant xenografting in man.
        Clin Transplant. 1992; 6: 178-183
        • Good A.H.
        • Cooper D.K.
        • Malcolm A.J.
        • et al.
        Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in humans.
        Transplant Proc. 1992; 24: 559-562
        • Doucet J.
        • Gao Z.H.
        • MacLaren L.A.
        • et al.
        Modification of xenoantigens on porcine erythrocytes for xenotransfusion.
        Surgery. 2004; 135: 178-186
        • Galili U.
        • Mandrell R.E.
        • Hamadeh R.M.
        • et al.
        Interaction between human natural anti-α-galactosyl immunoglogulin G and bacteria of the human flora.
        Infect Immun. 1988; 56: 1730-1737
        • Phelps C.J.
        • Koike C.
        • Vaught T.D.
        • et al.
        Production of alpha 1,3-galactosyltransferase-deficientpigs.
        Science. 2003; 299: 411-414
        • Kolber-Simonds D.
        • Lai L.
        • Watt S.R.
        • et al.
        Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations.
        Proc Natl Acad Sci U S A. 2004; 101: 7335-7340
        • Hara H.
        • Ezzelarab M.
        • Rood P.P.
        • et al.
        Allosensitized humans are at no greater risk of humoral rejection of GT-KO pig organs than other humans.
        Xenotransplantation. 2006; 13: 357-365
        • Rood P.P.M.
        • Hara H.
        • Busch J.L.
        • et al.
        Incidence and cytotoxicity of antibodies in cynomolgus monkeys directed to nonGal antigens, and their relevance for experimental models.
        Transpl Int. 2006; 19: 158-165
        • Ezzelarab M.
        • Hara H.
        • Busch J.
        • et al.
        Antibodies directed to pig non-Gal antigens in naive and sensitized baboons.
        Xenotransplantation. 2006; 13: 400-407
        • Zhu A.
        • Hurst R.
        Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum.
        Xenotransplantation. 2002; 9: 376-381
        • Schauer R.
        Sialic acids, chemistry, metabolism, and function.
        Springer, Vienna (Austria)1982
        • Asaoka H.
        • Matsuda H.
        Detection of N-glycolylneuraminic acid-containing glycoproteins from various animal erythrocytes by chicken monoclonal antibody against Hanganutziu-Deicher antigens.
        J Vet Med Sci. 1994; 56: 375-377
        • Varki A.
        Loss of N-glycolylneuraminic acid in humans: mechanisms, consequences, and implications for hominid evolution.
        Am J Phys Anthropol. 2001; 116: 54-69
        • Bouhours D.
        • Pourcel C.
        • Bouhours J.E.
        Simultaneous expression by porcine aorta endothelial cells of glycosphingolipids bearing the major epitope for human xenoreactive antibodies (Gal alpha 1–3Gal), blood group H determinant and N-glycolylneuraminic acid.
        Glycoconj J. 1996; 13: 947-953
      1. Yeh P, Ezzelarab M, Bovin N, et al. Investigation of potential carbohydrate antigen targets for human and baboon antibodies. Xenotransplantation, in press.

        • Blixt O.
        • Kumagai-Braesch M.
        • Tibell A.
        • et al.
        Anticarbohydrate antibody repertoires in patients transplanted with fetal pig islets revealed by glycan arrays.
        Am J Transplant. 2009; 9: 83-90
        • Zhu A.
        Binding of human natural antibodies to nonαGal xenoantigens on porcine erythrocytes.
        Transplantation. 2000; 69: 2422-2428
        • Zhu A.
        • Hurst R.
        Human natural antibodies that recognize nonalphaGal antigens on porcine red blood cells.
        Transplant Proc. 2000; 32: 872-873
        • Zhu A.
        • Goldstein J.
        Cloning and functional expression of a cDNA encoding coffee bean alpha-galactosidase.
        Gene. 1994; 140: 227-231
        • Zhu A.
        • Monahan C.
        • Zhang Z.
        • et al.
        High-level expression and purification of coffee bean alpha-galactosidase produced in the yeast Pichia pastoris.
        Arch Biochem Biophys. 1995; 324: 65-70
        • Zhu A.
        • Wang Z.K.
        Expression and characterization of recombinant alpha-galactosidase in baculovirus-infected insect cells.
        Eur J Biochem. 1996; 235: 332-337
        • LaVecchio J.A.
        • Dunne A.D.
        • Edge A.S.
        Enzymatic removal of alpha-galactosyl epitopes from porcine endothelial cells diminishes the cytotoxic effect of natural antibodies.
        Transplantation. 1995; 60: 841-847
        • Luo Y.
        • Wen J.
        • Luo C.
        • et al.
        Pig xenogeneic antigen modification with green coffee bean α-galactosidase: working conditions and potential application in xenotransplantation.
        Xenotransplantation. 1999; 6: 238-248
        • Kobayashi T.
        • Taniguchi S.
        • Neethling F.A.
        • et al.
        Delayed xenograft rejection of pig-to-baboon cardiac transplants after cobra venom factor therapy.
        Transplantation. 1997; 64: 1255
        • Xu Y.
        • Lorf T.
        • Sablinski T.
        • et al.
        Removal of anti-porcine natural antibodies from human and nonhuman primate plasma in vitro and in vivo by a Galα1-3Galα1-4αGlc-X immunoaffinity column.
        Transplantation. 1998; 65: 172-179
        • Kuwaki K.
        • Knosalla C.
        • Dor F.J.
        • et al.
        Suppression of natural and elicited antibodies in pig-to-baboon heart transplantation using a human anti-human CD154 mAb based regimen.
        Am J Transplant. 2004; 4: 363-372
        • Basker M.
        • Alwayn I.P.
        • Buhler L.
        • et al.
        Clearance of mobilized porcine peripheral blood progenitor cells is delayed by depletion of the phagocytic reticuloendothelial system in baboons.
        Transplantation. 2001; 72: 1278-1285
        • Tseng Y.-L.
        • Sachs D.H.
        • Cooper D.K.C.
        Porcine hematopoietic progenitor cell transplantation in nonhuman primates: a review of progress.
        Transplantation. 2005; 79: 1-9
        • Dor F.J.
        • Rouhani F.J.
        • Cooper D.K.
        Transfusion of pig red cells into baboons.
        Xenotransplantation. 2004; 11: 295-297
        • Llanes D.
        • Nogal M.L.
        • Prados F.
        • et al.
        An erythroid species-specific antigen of swine detected by a monoclonal antibody.
        Hybridoma. 1992; 11: 757-764
        • Rouhani F.J.
        • Dor F.J.
        • Cooper D.K.
        Investigation of red blood cells from alpha1,3-galactosyltransferase-knockout pigs for human blood transfusion.
        Transfusion. 2004; 44: 1004-1012
        • MacLaren L.A.
        • Riggs C.M.
        • Johnstone J.E.
        • et al.
        Evaluating porcine RBC and platelet alpha-galactosyl expression.
        Transfusion. 2002; 42: 1184-1188
        • Cooper D.K.C.
        Xenoantigens and xenoantibodies.
        Xenotransplantation. 1998; 5: 6-17
        • Ezzelarab M.
        • Ayares D.
        • Cooper D.K.
        Carbohydrates in xenotransplantation.
        Immunol Cell Biol. 2005; 83: 396-404
        • Huflejt M.E.
        • Vuskovic M.
        • Vasiliu D.
        • et al.
        Anti-carbohydrate antibodies of normal sera: findings, surprises and challenges.
        Mol Immunol. 2009; 46: 3037-3049
        • Long C.
        • Hara H.
        • Pawlikowski Z.
        • et al.
        Genetically-engineered pig red blood cells for clinical transfusion: initial in vitro studies.
        Transfusion. 2009; 49: 2418-2429
        • Rees M.A.
        • Butler A.J.
        • Negus M.C.
        • et al.
        Classical pathway complement destruction is not responsible for the loss of human erythrocytes during porcine liver perfusion.
        Transplantation. 2004; 77: 1416-1423
        • Rees M.A.
        • Butler A.J.
        • Brons I.G.
        • et al.
        Evidence of macrophage receptors capable of direct recognition of xenogeneic epitopes without opsonization.
        Xenotransplantation. 2005; 12: 13-19
        • Oldenborg P.A.
        • Zheleznyak A.
        • Fang Y.F.
        • et al.
        Role of CD47 as a marker of self on red blood cells.
        Science. 2000; 288: 2051-2054
        • Oldenborg P.A.
        • Gresham H.D.
        • Lindberg F.P.
        CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis.
        J Exp Med. 2001; 193: 855-862
        • Vernon-Wilson E.F.
        • Kee W.J.
        • Willis A.C.
        • et al.
        CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPalpha 1.
        Eur J Immunol. 2000; 30: 2130-2137
        • Ide K.
        • Ohdan H.
        • Kobayashi T.
        • et al.
        Antibody- and complement-independent phagocytotic and cytolytic activities of human macrophages toward porcine cells.
        Xenotransplantation. 2005; 12: 81-88
        • Wang H.
        • VerHalen J.
        • Madariaga M.L.
        • et al.
        Attenuation of phagocytosis of xenogeneic cells by manipulating CD47.
        Blood. 2007; 109: 836-842
        • Ide K.
        • Wang H.
        • Tahara H.
        • et al.
        Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages.
        Proc Natl Acad Sci U S A. 2007; 104: 5062-5066
        • Cooper D.K.C.
        • Tseng Y.L.
        • Saidman S.L.
        Alloantibody and xenoantibody cross-reactivity in transplantation.
        Transplantation. 2004; 77: 1-5
        • Phelps C.
        • Ball S.
        • Vaught T.
        • et al.
        Production and characterization of transgenic pigs expressing porcine CTLA4-Ig.
        Xenotransplantation. 2009; 16: 477-485
        • Koike C.
        • Kannagi R.
        • Takuma Y.
        • et al.
        Introduction of [alpha](1,2)- fucosyltransferase and its effect on [alpha]-Gal epitopes in transgenic pig.
        Xenotransplantation. 1996; 3: 81-86
        • Sharma A.
        • Okabe J.
        • Birch P.
        • et al.
        Reduction in the level of Gal(alpha1,3)Galα1,3Gal (Gal) in transgenic mice and pigs by the expression of an alpha(1,2)fucosyltransferase.
        Proc Natl Acad Sci U S A. 1996; 93: 7190-7195
        • Osman N.
        • Mckenzie I.F.
        • Ostenried K.
        • et al.
        Combined transgenic expression of alpha-galactosidase and alpha1,2-fucosyltransferase leads to optimal reduction in the major xenoepitope Gal alpha(1,3)Gal.
        Proc Natl Acad Sci U S A. 1997; 94: 14677-14682
        • Chen C.G.
        • Salvaris E.J.
        • Romanella M.
        • et al.
        Transgenic expression of human alpha1,2-fucosyltransferase (H-transferase) prolongs mouse heart survival in an ex vivo model of xenograft rejection.
        Transplantation. 1998; 65: 832-837
        • Costa C.
        • Zhao L.
        • Burton W.V.
        • et al.
        Expression of the human alpha1,2-fucosyltransferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum-mediated cytolysis.
        FASEB J. 1999; 13: 1762-1773
        • Ramsoondar J.J.
        • Machaty Z.
        • Costa C.
        • et al.
        Production of alpha 1,3- galactosyltransferase-knockout cloned pigs expressing human alpha 1,2-fucosylosyltransferase.
        Biol Reprod. 2003; 69: 437-445
        • Cozzi E.
        • White D.J.G.
        The generation of transgenic pigs as potential organ donors for humans.
        Nat Med. 1995; 1: 964-969
        • Diamond L.E.
        • Quinn C.M.
        • Martin M.J.
        • et al.
        A human CD46 transgenic pig model system for the study of discordant xenotransplantation.
        Transplantation. 2001; 71: 132-142
        • Adams D.H.
        • Kadner A.
        • Chen R.H.
        • et al.
        Human membrane cofactor protein (MCP, CD 46) protects transgenic pig hearts from hyperacute rejection in primates.
        Xenotransplantation. 2001; 8: 36-40
        • Loveland B.E.
        • Milland J.
        • Kyriakou P.
        • et al.
        Characterization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non-immunosuppressed baboons.
        Xenotransplantation. 2004; 11: 171-183
        • Hara H.
        • Long C.
        • Lin Y.J.
        • et al.
        In vitro investigation of pig cells for resistance to human antibody-mediated rejection.
        Transpl Int. 2008; 21: 1163-1174
        • Tadaki D.K.
        • Craighead N.
        • Saini A.
        • et al.
        Costimulatory molecules are active in the human xenoreactive T-cell response but not in natural killer-mediated cytotoxicity.
        Transplantation. 2000; 70: 162-167
        • Vaughan A.N.
        • Malde P.
        • Rogers N.J.
        • et al.
        Porcine CTLA4-Ig lacks a MYPPPY motif, binds inefficiently to human B7 and specifically suppresses human CD4+ T cell responses costimulated by pig but not human B7.
        J Immunol. 2000; 165: 3175-3181
        • Mirenda V.
        • Golshayan D.
        • Read J.
        • et al.
        Achieving permanent survival of islet xenografts by independent manipulation of direct and indirect T-cell responses.
        Diabetes. 2005; 54: 1048-1055
        • Miwa Y.
        • Kobayashi T.
        • Nagasaka T.
        • et al.
        Are N-glycolylneuraminic acid (Hanganutziu-Deicher) antigens important in pig-to-human xenotransplantation?.
        Xenotransplantation. 2004; 11: 247-253
        • Jeong S.T.
        • Byun S.M.
        Decreased agglutinability of methoxy-polyethylene glycol attached red blood cells: significance as a blood substitute.
        Artif Cells Blood Substit Immobil Biotechnol. 1996; 24: 503-511
        • Scott M.D.
        • Murad K.L.
        • Koumpouras F.
        • et al.
        Chemical camouflage of antigenic determinants: stealth erythrocytes.
        Proc Natl Acad Sci U S A. 1997; 94: 7566-7571
        • Scott M.D.
        • Bradley A.J.
        • Murad K.L.
        Camouflaged blood cells: low-technology bioengineering for transfusion medicine?.
        Transfus Med Rev. 2000; 14: 53-63
        • Scott M.D.
        • Chen A.M.
        Beyond the red cell: pegylation of other blood cells and tissues.
        Transfus Clin Biol. 2004; 11: 40-46
        • Murad K.L.
        • Mahany K.L.
        • Brugnara C.
        • et al.
        Structural and functional consequences of antigenic modulation of red blood cells with methoxypoly (ethylene glycol).
        Blood. 1999; 93: 2121-2127
        • Chen A.M.
        • Scott M.D.
        Current and future applications of immunological attenuation via pegylation of cells and tissues.
        BioDrugs. 2001; 15: 833-847
        • Garrity G.
        Modulating the red cell membrane to produce universal/stealth donor red cells suitable for transfusion.
        Vox Sang. 2008; 94: 87-95