Advertisement
Review Article| Volume 28, ISSUE 3, P411-422, September 2008

Pharmacogenomics: The Key to Improved Drug Therapy in Transplant Patients

      The current success in organ transplantation has been brought about by immunosuppressive therapy. Improvements in transplant outcome using these drugs have stalled, and an understanding of the pharmacogenomics of immunosuppressive dosing and response holds the greatest promise for advancing the use of these agents.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Burckart G.J.
        • Amur S.
        • Goodsaid F.M.
        • et al.
        Qualification of biomarkers for drug development in organ transplantation.
        Am J Transplant. 2008; 8: 267-270
        • Zheng H.
        • Webber S.
        • Schuetz E.
        • et al.
        Cytochrome P4503A and TNF-α genotypes are associated with tacrolimus dosing in pediatric heart transplant patients.
        Hum Immunol. 2002; 63: S15
        • Wojnowski L.
        Genetics of the variable expression of CYP3A in humans.
        Ther Drug Monit. 2004; 26: 192-199
        • Girnita D.M.
        • Webber S.A.
        • Ferrell R.
        • et al.
        Disparate distribution of 16 candidate single nucleotide polymorphisms among racial and ethnic groups of pediatric heart transplant patients.
        Transplantation. 2006; 82: 1774-1780
        • Anglicheau D.
        • Thervet E.
        • Etienne I.
        • et al.
        CYP3A5 and MDR1 genetic polymorphisms and cyclosporine pharmacokinetics after renal transplantation.
        Clin Pharmacol Ther. 2004; 75: 422-433
        • Zheng H.
        • Zeevi A.
        • Schuetz E.
        • et al.
        Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism.
        J Clin Pharmacol. 2004; 44: 135-140
        • Yu S.
        • Wu L.
        • Jin J.
        • et al.
        Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation.
        Transplantation. 2006; 81: 46-51
        • Wei-lin W.
        • Jing J.
        • Shu-sen Z.
        • et al.
        Tacrolimus dose requirement in relation to donor and recipient ABCB1 and CYP3A5 gene polymorphisms in Chinese liver transplant patients.
        Liver Transpl. 2006; 12: 775-780
        • Haufroid V.
        • Wallemacq P.
        • VanKerckhove V.
        • et al.
        CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study.
        Am J Transplant. 2006; 6: 2706-2713
        • Op den Buijsch R.A.
        • Christiaans M.H.
        • Stolk L.M.
        • et al.
        Tacrolimus pharmacokinetics and pharmacogenetics: influence of adenosine triphosphate-binding cassette B1 (ABCB1) and cytochrome (CYP) 3A polymorphisms.
        Fundam Clin Pharmacol. 2007; 21: 427-435
        • Ng F.L.
        • Holt D.W.
        • MacPhee I.A.
        Pharmacogenetics as a tool for optimising drug therapy in solid organ transplantation.
        Expert Opin Pharmacother. 2007; 8: 2045-2058
        • Kuypers D.R.
        • de Jonge H.
        • Naesens M.
        • et al.
        CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients.
        Clin Pharmacol Ther. 2007; 82: 711-725
        • Anglicheau D.
        • Legendre C.
        • Thervet E.
        Pharmacogenetics of tacrolimus and sirolimus in renal transplant patients: from retrospective analyses to prospective studies.
        Transplant Proc. 2007; 39: 2142-2144
        • Le Meur Y.
        • Djebli N.
        • Szelag J.C.
        • et al.
        CYP3A5*3 influences sirolimus oral clearance in de novo and stable renal transplant recipients.
        Clin Pharmacol Ther. 2006; 80: 51-60
        • Lee S.J.
        • Jusko W.J.
        • Salaita C.G.
        • et al.
        Reduced methylprednisolone clearance causing prolonged pharmacodynamics in a healthy subject was not associated with CYP3A5*3 allele or a change in diet composition.
        J Clin Pharmacol. 2006; 46: 515-526
        • Ferraresso M.
        • Tirelli A.
        • Ghio L.
        • et al.
        Influence of the CYP3A5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients [see comment].
        Pediatr Transplant. 2007; 11: 296-300
        • Zheng H.
        • Webber S.
        • Zeevi A.
        • et al.
        Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms.
        Am J Transplant. 2003; 3: 477-483
        • Elens L.
        • Capron A.
        • Kerckhove V.V.
        • et al.
        1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation.
        Pharmacogenet Genomics. 2007; 17: 873-883
        • Fanta S.
        • Niemi M.
        • Jonsson S.
        • et al.
        Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms.
        Pharmacogenet Genomics. 2008; 18: 77-90
        • Hauser I.A.
        • Schaeffeler E.
        • Gauer S.
        • et al.
        ABCB1 genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation.
        J Am Soc Nephrol. 2005; 16: 1501-1511
        • Zheng H.
        • Webber S.
        • Zeevi A.
        • et al.
        The MDR1 polymorphisms at exons 21 and 26 predict steroid weaning in pediatric heart transplant patients.
        Hum Immunol. 2002; 63: 765-770
        • Zheng H.X.
        • Webber S.A.
        • Zeevi A.
        • et al.
        The impact of pharmacogenomic factors on steroid dependency in pediatric heart transplant patients using logistic regression analysis.
        Pediatr Transplant. 2004; 8: 551-557
        • Wang J.
        • Figurski M.
        • Shaw L.M.
        • et al.
        The impact of P-glycoprotein and Mrp2 on mycophenolic acid levels in mice.
        Transpl Immunol. 2008; 19: 192-196
        • Naesens M.
        • Kuypers D.R.
        • Verbeke K.
        • et al.
        Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients.
        Transplantation. 2006; 82: 1074-1084
        • Ohmann E.L.
        • Burckart G.J.
        • Chen Y.
        • et al.
        Impact of inosine 5′-monophosphate dehyrogenase 1,2 and multidrug resistance protein 2 genetic polymorphisms on mycophenolate mofetil-related adverse events in pediatric heart transplant patients.
        J Heart Lung Transplant. 2008; 27: S181
        • Miura M.
        • Satoh S.
        • Inoue K.
        • et al.
        Influence of SLCO1B1, 1B3, 2B1, and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients.
        Eur J Clin Pharmacol. 2007; 63: 1161-1169
        • Sahasranaman S.
        • Howard D.
        • Roy S.
        • et al.
        Clinical pharmacology and pharmacogenetics of thiopurines.
        Eur J Clin Pharmacol. 2008; 64: 753-767
        • Thervet E.
        • Anglicheau D.
        • Legendre C.
        • et al.
        Role of pharmacogenetics of immunosuppressive drugs in organ transplantation.
        Ther Drug Monit. 2008; 30: 143-150
        • Cattaneo D.
        • Baldelli S.
        • Perico N.
        Pharmacogenetics of immunosuppressants: progress, pitfalls, and promises.
        Am J Transplant. 2008; 8: 1374-1383
        • Wang J.
        • Zeevi A.
        • Webber S.
        • et al.
        A novel variant L263F in human inosine 5′-monophosphate dehydrogenase 2 is associated with diminished enzyme activity.
        Pharmacogenet Genomics. 2007; 17: 283-290
        • Wang J.
        • Yang J.W.
        • Zeevi A.
        • et al.
        IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients.
        Clin Pharmacol Ther. 2008; 83: 711-717
        • Burckart G.J.
        • Frueh F.W.
        • Lesko L.J.
        Progress in the direct application of pharmacogenomics to patient care: sustaining innovation.
        J Appl Pharmacol. 2007; 15: 1-6
      1. Dosage calculation algorithm. Available at: http://www.warfarindosing.org. Barnes-Jewish Hospital at Washington University Medical Center. Accessed November 2, 2008.