Patterns embedded in large volumes of clinical data may provide important insights
into the characteristics of patients or care delivery processes, but may be difficult
to identify by traditional means. Data mining offers methods that can recognize patterns
in these large data sets and make them actionable. We present an example of this capability
in which we successfully applied data mining to hospital infection control. The Data
Mining Surveillance System (DMSS) uses data from the clinical laboratory and hospital
information systems to create association rules linking patients, sample types, locations,
organisms, and antibiotic susceptibilities. Changes in association strength over time
signal epidemiologic patterns potentially appropriate for follow-up, and additional
heuristic methods identify the most informative of these patterns for alerting.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
Content published before 2002 is available via pay-per-view purchase only.
Subscribe:
Subscribe to Clinics in Laboratory MedicineAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Accuracy of reporting nosocomial infections in intensive-care-unit patients to the National Nosocomial Infections Surveillance System: a pilot study.Infect Control Hosp Epidemiol. 1998; 19: 308-316
- A laboratory-based, hospital-wide, electronic marker for nosocomial infection.Am J Clin Pathol. 2006; 125: 34-39
- An expert system for culture-based infectioncontrol surveillance.Proc Annu Symp Comput Appl Med Care. 1993; : 171-175
- Machine learning.McGraw Hill, 1997
- Association rules and data mining in hospital infection control and public health surveillance.J Am Med Inform Assoc. 1998; 5: 373-381
- Application of knowledge discovery and data mining to intensive care microbiologic data.Journal of Emerging Infectious Diseases. 1999; 5: 454-457
- A data mining system for infection control surveillance.Methods Inf Med. 2000; 39: 303-310
- Hunting healthcare associated infections from the clinical microbiology laboratory: passive, active, and virtual surveillance.J Clin Microbiol. 2002; 40: 1-4
- Detection of a community infection outbreak with virtual surveillance.Lancet. 2003; 362 ([letter]): 1587-1588
Article info
Identification
Copyright
© 2008 Elsevier Inc. Published by Elsevier Inc. All rights reserved.