Advertisement
Review Article| Volume 28, ISSUE 1, P101-117, March 2008

Regional and National Health Care Data Repositories

      Efforts are underway to define a national framework for secondary analysis of health-related data. In the meantime, regional health databases have been constructed using insurance claims data, clinical data from single large health care providers, clinical data from multiple collaborating health care providers, and public health data. Large-scale survey data also are available in government databases. Clinical laboratory results are an important component of all these databases because they can provide validation for manually assigned diagnostic and procedure codes and can support inference of key information not provided by coding, such as severity of disease and prevalence of risk factors.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Feinstein A.R.
        An additional basic science for clinical medicine: II. The limitations of randomized trials.
        Ann Intern Med. 1983; 99: 544-550
        • Grossman J.
        • Mackenzie F.J.
        The randomized controlled trial: gold standard, or merely standard?.
        Perspect Biol Med. 2005; 48: 516-534
        • Safran C.
        • Bloomrosen M.
        • Hammond W.E.
        • et al.
        Toward a national framework for the secondary use of health data: an American Medical Informatics Association white paper.
        J Am Med Inform Assoc. 2007; 14: 1-9
        • Blewett L.A.
        • Parente S.T.
        • Finch M.D.
        • et al.
        National health data warehouse: issues to consider.
        J Healthc Inf Manag. 2004; 18: 52-58
        • Altshuler C.H.
        Building a database for monitoring and facilitating health care.
        Clin Lab Med. 1983; 3: 179-204
        • Altshuler C.H.
        Use of comprehensive laboratory data as a management tool.
        Clin Lab Med. 1985; 5: 673-696
        • Eggert A.A.
        • Emmerich K.A.
        Long-term data storage in a clinical laboratory information system.
        J Med Syst. 1989; 13: 347-354
        • Kamal J.
        • Rogers P.
        • Saltz J.
        • et al.
        Information warehouse as a tool to analyze Computerized Physician Order Entry order set utilization: opportunities for improvement.
        AMIA Annu Symp Proc. 2003; : 336-340
        • Maizlish N.A.
        • Shaw B.
        • Hendry K.
        Glycemic control in diabetic patients served by community health centers.
        Am J Med Qual. 2004; 19: 172-179
        • Bock B.J.
        • Dolan C.T.
        • Miller G.C.
        • et al.
        The data warehouse as a foundation for population-based reference intervals.
        Am J Clin Pathol. 2003; 120: 662-670
        • Bates D.W.
        • Pappius E.
        • Kuperman G.J.
        • et al.
        Using information systems to measure and improve quality.
        Int J Med Inform. 1999; 53: 115-124
        • Gilbertson J.R.
        • Gupta R.
        • Nie Y.
        • et al.
        Automated clinical annotation of tissue bank specimens.
        Medinfo. 2004; 11: 607-610
        • Aller R.D.
        The clinical laboratory data warehouse. An overlooked diamond mine.
        Am J Clin Pathol. 2003; 120: 817-819
        • McCarthy E.P.
        • Iezzoni L.I.
        • Davis R.B.
        • et al.
        Does clinical evidence support ICD-9-CM diagnosis coding of complications?.
        Med Care. 2000; 38: 868-876
        • Solberg L.I.
        • Engebretson K.I.
        • Sperl-Hillen J.M.
        • et al.
        Are claims data accurate enough to identify patients for performance measures or quality improvement? The case of diabetes, heart disease and depression.
        Am J Med Qual. 2006; 21: 238-245
        • O'Malley K.J.
        • Cook K.F.
        • Price M.D.
        • et al.
        Measuring diagnoses: ICD code accuracy.
        Health Serv Res. 2005; 40: 1620-1639
        • Rector T.S.
        • Wickstrom S.L.
        • Shah M.
        • et al.
        Specificity and sensitivity of claims-based algorithms for identifying members of Medicare+choice health plans that have chronic medical conditions.
        Health Serv Res. 2004; 39: 1839-1857
        • Udvarhelyi I.S.
        • Gatsonis C.
        • Epstein A.M.
        • et al.
        Acute myocardial infarction in the Medicare population. Process of care and clinical outcomes.
        JAMA. 1992; 268: 2530-2536
        • National Committee for Quality Assurance
        Health Plan Employer Data and Information Set 3.0.
        National Committee for Quality Assurance, Washington, DC1998
        • Ahmed F.
        • Janes G.R.
        • Baron R.
        • et al.
        Preferred provider organization claims showed high predictive value but missed substantial proportion of adults with high-risk conditions.
        J Clin Epidemiol. 2005; 58: 624-628
        • Kern E.F.
        • Maney M.
        • Miller D.R.
        • et al.
        Failure of ICD-9-CM codes to identify patients with comorbid chronic kidney disease in diabetes.
        Health Serv Res. 2006; 41: 564-580
        • Birman-Deych E.
        • Waterman A.D.
        • Yan Y.
        • et al.
        Accuracy of ICD-9-CM codes for identifying cardiovascular and stroke risk factors.
        Med Care. 2005; 43: 480-485
        • Bullano M.F.
        • Kamat S.
        • Willey V.J.
        • et al.
        Agreement between administrative claims and the medical record in identifying patients with a diagnosis of hypertension.
        Med Care. 2006; 44: 486-490
        • Waikar S.S.
        • Wald R.
        • Chertow G.M.
        • et al.
        Validity of international classification of diseases, ninth revision, clinical modification codes for acute renal failure.
        J Am Soc Nephrol. 2006; 17: 1688-1694
        • Aronsky D.
        • Haug P.J.
        • Lagor C.
        • et al.
        Accuracy of administrative data for identifying patients with pneumonia.
        Am J Med Qual. 2005; 20: 319-328
        • Dombkowski K.J.
        • Wasilevich E.A.
        • Lyon-Callo S.K.
        Pediatric asthma surveillance using Medicaid claims.
        Public Health Rep. 2005; 120: 515-524
        • Kolodner K.
        • Lipton R.B.
        • Lafata J.E.
        • et al.
        Pharmacy and medical claims data identified migraine sufferers with high specificity but modest sensitivity.
        J Clin Epidemiol. 2004; 57: 962-972
        • Harrold L.R.
        • Saag K.G.
        • Yood R.A.
        • et al.
        Validity of gout diagnoses in administrative data.
        Arthritis Rheum. 2007; 57: 103-108
        • Bazarian J.J.
        • Veazie P.
        • Mookerjee S.
        • et al.
        Accuracy of mild traumatic brain injury case ascertainment using ICD-9 codes.
        Acad Emerg Med. 2006; 13: 31-38
        • Mapel D.W.
        • Frost F.J.
        • Hurley J.S.
        • et al.
        An algorithm for the identification of undiagnosed COPD cases using administrative claims data.
        J Manag Care Pharm. 2006; 12: 457-465
        • Hollis J.
        Deploying an HMO's data warehouse.
        Health Manag Technol. 1998; 19: 46-48
        • Joyce J.S.
        • Fetter M.M.
        • Klopfenstein D.H.
        • et al.
        The Kaiser Permanente Northwest Cardiovascular Risk Factor Management Program: a model for all.
        The Permanente Journal. 2004; 9: 19-26
        • Sequist T.D.
        • Cullen T.
        • Ayanian J.Z.
        Information technology as a tool to improve the quality of American Indian health care.
        Am J Public Health. 2005; 95: 2173-2179
        • Koski E.
        • Teates K.S.
        • Tellez P.
        • et al.
        Exploring the role of Quest Diagnostics corporate data warehouse for timely influenza surveillance.
        Advances in Disease Surveillance. 2006; 1: 41
        • Kupersmith J.
        • Francis J.
        • Kerr E.
        • et al.
        Advancing evidence-based care for diabetes: lessons from the Veterans Health Administration.
        Health Aff (Millwood). 2007; 26: w156-w168
        • Berndt D.J.
        • Hevner A.R.
        • Studnicki J.
        The Catch data warehouse: support for community health care decision-making.
        Decision Support Systems. 2003; 35: 367-384
        • Starr P.
        Smart technology, stunted policy: developing health information networks.
        Health Aff (Millwood). 1997; 16: 91-105
        • Payton F.C.
        • Brennan P.F.
        How a community health information network is really used.
        Commun ACM. 1999; 42: 85-89
        • Berberabe T.
        Information: it's better when you share.
        Manag Care. 2005; 14 (30, 35–37)
        • Solomon M.R.
        Regional health information organizations: a vehicle for transforming health care delivery?.
        J Med Syst. 2007; 31: 35-47
      1. Massachusetts Health Data Consortium. Active Regional Health Information Organizations (RHIO) List. 2006. Available at: http://www.mahealthdata.org/data/library/20061127_ActiveRHIOs.pdf. Accessed August 19, 2007.

        • Wright A.
        • Ricciardi T.N.
        • Zwick M.
        Application of information-theoretic data mining techniques in a national ambulatory practice outcomes research network.
        AMIA Annu Symp Proc. 2005; : 829-833
        • Everett A.D.
        • Ringel R.
        • Rhodes J.F.
        • et al.
        Development of the MAGIC congenital heart disease catheterization database for interventional outcome studies.
        J Interv Cardiol. 2006; 19: 173-177
        • Currie C.J.
        • McEwan P.
        • Peters J.R.
        • et al.
        The routine collation of health outcomes data from hospital treated subjects in the Health Outcomes Data Repository (HODaR): descriptive analysis from the first 20,000 subjects.
        Value Health. 2005; 8: 581-590
        • van Bemmel J.H.
        • van Mulligen E.M.
        • Mons B.
        • et al.
        Databases for knowledge discovery. Examples from biomedicine and health care.
        Int J Med Inform. 2006; 75: 257-267
        • Ben Said M.
        • le Mignot L.
        • Mugnier C.
        • et al.
        A multi-source information system via the Internet for end-stage renal disease: scalability and data quality.
        Stud Health Technol Inform. 2005; 116: 994-999
        • Steil H.
        • Amato C.
        • Carioni C.
        • et al.
        EuCliD—a medical registry.
        Methods Inf Med. 2004; 43: 83-88
        • Hristovski D.
        • Rogac M.
        • Markota M.
        Using data warehousing and OLAP in public health care.
        Proc AMIA Symp. 2000; : 369-373
        • Muilu J.
        • Peltonen L.
        • Litton J.E.
        The federated database–a basis for biobank-based post-genome studies, integrating phenome and genome data from 600,000 twin pairs in Europe.
        Eur J Hum Genet. 2007; 15: 718-723
        • Scotch M.
        • Parmanto B.
        Development of SOVAT: a numerical-spatial decision support system for community health assessment research.
        Int J Med Inform. 2006; 75: 771-784
        • Inhorn S.L.
        • Wilcke Jr., B.W.
        • Downes F.P.
        • et al.
        A comprehensive Laboratory Services Survey of State Public Health Laboratories.
        J Public Health Manag Pract. 2006; 12: 514-521
        • Hanrahan L.P.
        • Foldy S.
        • Barthell E.N.
        • et al.
        Medical informatics in population health: building Wisconsin's strategic framework for health information technology.
        WMJ. 2006; 105: 16-20
        • Loonsk J.W.
        • McGarvey S.R.
        • Conn L.A.
        • et al.
        The Public Health Information Network (PHIN) Preparedness initiative.
        J Am Med Inform Assoc. 2006; 13: 1-4
        • Banks D.
        • Woo E.J.
        • Burwen D.R.
        • et al.
        Comparing data mining methods on the VAERS database.
        Pharmacoepidemiol Drug Saf. 2005; 14: 601-609
        • Iskander J.
        • Pool V.
        • Zhou W.
        • et al.
        Data mining in the US using the Vaccine Adverse Event Reporting System.
        Drug Saf. 2006; 29: 375-384
        • Zeni M.B.
        • Kogan M.D.
        Existing population-based health databases: useful resources for nursing research.
        Nurs Outlook. 2007; 55: 20-30
        • Cabell C.H.
        • Noto T.C.
        • Krucoff M.W.
        Clinical utility of the food and drug administration electrocardiogram warehouse: a paradigm for the critical pathway initiative.
        J Electrocardiol. 2005; 38: 175-179
      2. Health Level Seven, Inc. About HL7. Available at: http://www.hl7.org/about/hl7about.htm. Accessed August 19, 2007.

        • Blobel B.G.M.E.
        • Engel K.
        • Pharow P.
        Semantic interoperability–HL7 version 3 compared to advanced architecture standards.
        Methods Inf Med. 2006; 45: 343-353
      3. Regenstrief Institute, Inc. Logical Observation Identifiers Names and Codes (LOINC®). Available at: http://www.regenstrief.org/medinformatics/loinc/. Accessed August 19, 2007.

      4. National Library of Medicine. SNOMED Clinical Terms® (SNOMED CT®). Available at: http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html. Accessed August 19, 2007.

        • Black N.
        Secondary use of personal data for health and health services research: why identifiable data are essential.
        J Health Serv Res Policy. 2003; 8: 36-40
        • Emons M.F.
        Integrated patient data for optimal patient management: the value of laboratory data in quality improvement.
        Clin Chem. 2001; 47: 1516-1520
        • Post A.R.
        • Harrison Jr., J.H.
        PROTEMPA: a method for specifying and identifying temporal sequences in retrospective data for patient selection.
        J Am Med Inform Assoc. 2007; 14: 674-683
        • Ricos C.
        • Domenech M.V.
        • Perich C.
        Analytical quality specifications for common reference intervals.
        Clin Chem Lab Med. 2004; 42: 858-862
        • Westgard J.O.
        • Westgard S.A.
        The quality of laboratory testing today: an assessment of sigma metrics for analytic quality using performance data from proficiency testing surveys and the CLIA criteria for acceptable performance.
        Am J Clin Pathol. 2006; 125: 343-354
        • Viljoen A.
        • Twomey P.J.
        True or not: uncertainty of laboratory results.
        J Clin Pathol. 2007; 60: 587-588
        • Karvanen J.
        The statistical basis of laboratory data normalization.
        Drug Inf J. 2003; 37: 101-107
        • Ruvuna F.
        • Flores D.
        • Mikrut B.
        • et al.
        Generalized lab norms for standardizing data from multiple laboratories.
        Drug Inf J. 2003; 37: 61-79