Advertisement
Review Article| Volume 26, ISSUE 1, P165-184, March 2006

Hyperthermic Syndromes Induced by Toxins

  • Daniel E. Rusyniak
    Correspondence
    Corresponding author. Division of Medical Toxicology, Department of Emergency Medicine, Indiana University School of Medicine, 1050 Wishard Boulevard, Room 2200, Indianapolis, IN 46202.
    Affiliations
    Division of Medical Toxicology, Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA

    Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA

    Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
    Search for articles by this author
  • Jon E. Sprague
    Affiliations
    Virginia College of Osteopathic Medicine, Blacksburg, VA, USA

    Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
    Search for articles by this author
      Body temperature regulation is complex and requires a balance between heat production and dissipation. Hyperthermia occurs when metabolic heat production exceeds heat dissipation. Many exogenously administered xenobiotics are capable of altering the body's ability to maintain a constant temperature. For example, agents with anticholinergic activity may contribute to hyperthermia by eliminating sweating and evaporation [
      • Adubofour K.O.
      • Kajiwara G.T.
      • Goldberg C.M.
      • et al.
      Oxybutynin-induced heatstroke in an elderly patient.
      ]. Because both recognition and treatment vary with the cause of hyperthermia, it is important for clinicians to understand the various presentations and treatments of toxin-induced hyperthermic syndromes.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adubofour K.O.
        • Kajiwara G.T.
        • Goldberg C.M.
        • et al.
        Oxybutynin-induced heatstroke in an elderly patient.
        Ann Pharmacother. 1996; 30: 144-147
        • Lowell B.B.
        • Spiegelman B.M.
        Towards a molecular understanding of adaptive thermogenesis.
        Nature. 2000; 404: 652-660
        • Charkoudian N.
        Skin blood flow in adult human thermoregulation: how it works, when it does not, and why.
        Mayo Clin Proc. 2003; 78: 603-612
        • Nielsen B.
        Heat acclimation—mechanisms of adaptation to exercise in the heat.
        Int J Sports Med. 1998; 19: S154-S156
        • De Witte J.
        • Sessler D.I.
        Perioperative shivering: physiology and pharmacology.
        Anesthesiology. 2002; 96: 467-484
        • Mallick B.N.
        • Jha S.K.
        • Islam F.
        Presence of alpha-1 adrenoreceptors on thermosensitive neurons in the medial preoptico-anterior hypothalamic area in rats.
        Neuropharmacology. 2002; 42: 697-705
        • Cox B.
        • Lee T.F.
        Further evidence for a physiological role for hypothalamic dopamine in thermoregulation in the rat.
        J Physiol. 1980; 300: 7-17
        • Rothwell N.J.
        CNS regulation of thermogenesis.
        Crit Rev Neurobiol. 1994; 8: 1-10
        • Landsberg L.
        • Saville M.E.
        • Young J.B.
        Sympathoadrenal system and regulation of thermogenesis.
        Am J Physiol. 1984; 247: E181-E189
        • Wallace K.B.
        • Starkov A.A.
        Mitochondrial targets of drug toxicity.
        Annu Rev Pharmacol Toxicol. 2000; 40: 353-388
        • Boss O.
        • Muzzin P.
        • Giacobino J.P.
        The uncoupling proteins, a review.
        Eur J Endocrinol. 1998; 139: 1-9
        • Nicholls D.G.
        • Locke R.M.
        Thermogenic mechanisms in brown fat.
        Physiol Rev. 1984; 64: 1-64
        • Boss O.
        • Samec S.
        • Paoloni-Giacobino A.
        • et al.
        Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression.
        FEBS Lett. 1997; 408: 39-42
        • Simonyan R.A.
        • Jimenez M.
        • Ceddia R.B.
        • et al.
        Cold-induced changes in the energy coupling and the UCP3 level in rodent skeletal muscles.
        Biochim Biophys Acta. 2001; 1505: 271-279
        • Ribeiro M.O.
        • Lebrun F.L.
        • Christoffolete M.A.
        • et al.
        Evidence of UCP1-independent regulation of norepinephrine-induced thermogenesis in brown fat.
        Am J Physiol Endocrinol Metab. 2000; 279: E314-E322
        • Gong D.W.
        • He Y.
        • Karas M.
        • et al.
        Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta 3-adrenergic agonists, and leptin.
        J Biol Chem. 1997; 272: 24129-24132
        • Rubio A.
        • Raasmaja A.
        • Maia A.L.
        • et al.
        Effects of thyroid hormone on norepinephrine signaling in brown adipose tissue. I. Beta 1- and beta 2-adrenergic receptors and cyclic adenosine 3′,5′–monophosphate generation.
        Endocrinology. 1995; 136: 3267-3276
        • Bianco A.C.
        • Carvalho S.D.
        • Carvalho C.R.
        • et al.
        Thyroxine 5′-deiodination mediates norepinephrine-induced lipogenesis in dispersed brown adipocytes.
        Endocrinology. 1998; 139: 571-578
        • Silva J.E.
        Thyroid hormone control of thermogenesis and energy balance.
        Thyroid. 1995; 5: 481-492
        • Reitman M.L.
        • He Y.
        • Gong D.W.
        Thyroid hormone and other regulators of uncoupling proteins.
        Int J Obes Relat Metab Disord. 1999; 23: S56-S59
        • Roberts J.R.
        • Quattrocchi E.
        • Howland M.A.
        Severe hyperthermia secondary to intravenous drug abuse.
        Am J Emerg Med. 1984; 2: 373
        • Kendrick W.C.
        • Hull A.R.
        • Knochel J.P.
        Rhabdomyolysis and shock after intravenous amphetamine administration.
        Ann Intern Med. 1977; 86: 381-387
        • Ginsberg M.D.
        • Hertzman M.
        • Schmidt-Nowara W.W.
        Amphetamine intoxication with coagulopathy, hyperthermia, and reversible renal failure. A syndrome resembling heatstroke.
        Ann Intern Med. 1970; 73: 81-85
        • Dar K.J.
        • McBrien M.E.
        MDMA induced hyperthermia: report of a fatality and review of current therapy.
        Intensive Care Med. 1996; 22: 995-996
        • Prior F.H.
        • Isbister G.K.
        • Dawson A.H.
        • et al.
        Serotonin toxicity with therapeutic doses of dexamphetamine and venlafaxine.
        Med J Aust. 2002; 176: 240-241
        • Bodner R.A.
        • Lynch T.
        • Lewis L.
        • et al.
        Serotonin syndrome.
        Neurology. 1995; 45: 219-223
        • Eadie M.J.
        Convulsive ergotism: epidemics of the serotonin syndrome?.
        Lancet Neurol. 2003; 2: 429-434
        • Caporael L.R.
        Ergotism: the satan loosed in Salem?.
        Science. 1976; 192: 21-26
        • Mitchell R.S.
        Fatal toxic encephalitis occurring during iproniazid therapy in pulmonary tuberculosis.
        Ann Intern Med. 1955; 42: 417-424
        • Asch D.A.
        • Parker R.M.
        The Libby Zion case. One step forward or two steps backward?.
        N Engl J Med. 1988; 318: 771-775
        • Mills K.C.
        Serotonin syndrome. A clinical update.
        Crit Care Clin. 1997; 13: 763-783
        • Sternbach H.
        The serotonin syndrome.
        Am J Psychiatry. 1991; 148: 705-713
        • Hilton S.E.
        • Maradit H.
        • Moller H.J.
        Serotonin syndrome and drug combinations: focus on MAOI and RIMA.
        Eur Arch Psychiatry Clin Neurosci. 1997; 247: 113-119
        • Radomski J.W.
        • Dursun S.M.
        • Reveley M.A.
        • et al.
        An exploratory approach to the serotonin syndrome: an update of clinical phenomenology and revised diagnostic criteria.
        Med Hypotheses. 2000; 55: 218-224
        • Milroy C.M.
        • Clark J.C.
        • Forrest A.R.
        Pathology of deaths associated with “ecstasy” and “eve” misuse.
        J Clin Pathol. 1996; 49: 149-153
        • Gowing L.R.
        • Henry-Edwards S.M.
        • Irvine R.J.
        • et al.
        The health effects of ecstasy: a literature review.
        Drug Alcohol Rev. 2002; 21: 53-63
        • Mason P.J.
        • Morris V.A.
        • Balcezak T.J.
        Serotonin syndrome. Presentation of 2 cases and review of the literature.
        Medicine. 2000; 79: 201-209
        • Kolecki P.
        Isolated venlafaxine-induced serotonin syndrome.
        J Emerg Med. 1997; 15: 491-493
        • Lejoyeux M.
        • Fineyre F.
        • Ades J.
        The serotonin syndrome.
        Am J Psychiatry. 1992; 149: 1410-1411
        • Skop B.P.
        • Finkelstein J.A.
        • Mareth T.R.
        • et al.
        The serotonin syndrome associated with paroxetine, an over-the-counter cold remedy, and vascular disease.
        Am J Emerg Med. 1994; 12: 642-644
        • Meyer D.
        • Halfin V.
        Toxicity secondary to meperidine in patients on monoamine oxidase inhibitors: a case report and critical review.
        J Clin Psychopharmacol. 1981; 1: 319-321
        • Sandyk R.
        L-dopa induced “serotonin syndrome” in a parkinsonian patient on bromocriptine.
        J Clin Psychopharmacol. 1986; 6: 194-195
        • Mahlberg R.
        • Kunz D.
        • Sasse J.
        • et al.
        Serotonin syndrome with tramadol and citalopram.
        Am J Psychiatry. 2004; 161: 1129
        • Muly E.C.
        • McDonald W.
        • Steffens D.
        • et al.
        Serotonin syndrome produced by a combination of fluoxetine and lithium.
        Am J Psychiatry. 1993; 150: 1565
        • Malberg J.E.
        • Seiden L.S.
        Small changes in ambient temperature cause large changes in 3,4-methylenedioxymethamphetamine (MDMA)–induced serotonin neurotoxicity and core body temperature in the rat.
        J Neurosci. 1998; 18: 5086-5094
        • Ali S.F.
        • Newport G.D.
        • Holson R.R.
        • et al.
        Low environmental temperatures or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice.
        Brain Res. 1994; 658: 33-38
        • Miller D.B.
        • O'Callaghan J.P.
        Elevated environmental temperature and methamphetamine neurotoxicity.
        Environ Res. 2003; 92: 48-53
        • Gordon C.J.
        • Watkinson W.P.
        • O'Callaghan J.P.
        • et al.
        Effects of 3,4-methylenedioxymethamphetamine on autonomic thermoregulatory responses of the rat.
        Pharmacol Biochem Behav. 1991; 38: 339-344
        • Marzuk P.M.
        • Tardiff K.
        • Leon A.C.
        • et al.
        Ambient temperature and mortality from unintentional cocaine overdose.
        JAMA. 1998; 279: 1795-1800
        • Duarte J.A.
        • Leao A.
        • Magalhaes J.
        • et al.
        Strenuous exercise aggravates MDMA-induced skeletal muscle damage in mice.
        Toxicology. 2005; 206: 349-358
        • Harding M.
        • Peterson D.I.
        The effect of exercise and limitation of movement on amphetamine toxicity.
        J Pharmacol Exp Ther. 1963; 145: 47-51
        • Rusyniak D.E.
        • Tandy S.L.
        • Hekmatyar S.K.
        • et al.
        The role of mitochondrial uncoupling in 3,4-methylenedioxymethamphetamine mediated skeletal muscle hyperthermia and rhabdomyolysis.
        J Pharmacol Exp Ther. 2005; 313: 629-639
        • Henry J.A.
        • Jeffreys K.J.
        • Dawling S.
        Toxicity and deaths from 3,4-methylenedioxymethamphetamine (“ecstasy”).
        Lancet. 1992; 340: 384-387
        • Sprague J.E.
        • Brutcher R.E.
        • Mills E.M.
        • et al.
        Attenuation of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy)–induced rhabdomyolysis with alpha1- plus beta3-adrenoreceptor antagonists.
        Br J Pharmacol. 2004; 142: 667-670
        • Stephenson C.P.
        • Hunt G.E.
        • Topple A.N.
        • et al.
        The distribution of 3,4-methylenedioxymethamphetamine “Ecstasy”–induced c-fos expression in rat brain.
        Neuroscience. 1999; 92: 1011-1023
        • Nisijima K.
        • Shioda K.
        • Yoshino T.
        • et al.
        Diazepam and chlormethiazole attenuate the development of hyperthermia in an animal model of the serotonin syndrome.
        Neurochem Int. 2003; 43: 155-164
        • Nisijima K.
        • Yoshino T.
        • Ishiguro T.
        Risperidone counteracts lethality in an animal model of the serotonin syndrome.
        Psychopharmacology (Berl). 2000; 150: 9-14
        • Shioda K.
        • Nisijima K.
        • Yoshino T.
        • et al.
        Extracellular serotonin, dopamine and glutamate levels are elevated in the hypothalamus in a serotonin syndrome animal model induced by tranylcypromine and fluoxetine.
        Prog Neuropsychopharmacol Biol Psychiatry. 2004; 28: 633-640
        • Nisijima K.
        • Nibuya M.
        • Sugiyama H.
        Abnormal CSF monoamine metabolism in serotonin syndrome.
        J Clin Psychopharmacol. 2003; 23: 528-531
        • Nisijima K.
        Abnormal monoamine metabolism in cerebrospinal fluid in a case of serotonin syndrome.
        J Clin Psychopharmacol. 2000; 20: 107-108
        • Fernandez F.
        • Aguerre S.
        • Mormede P.
        • et al.
        Influences of the corticotropic axis and sympathetic activity on neurochemical consequences of 3,4-methylenedioxymethamphetamine (MDMA) administration in Fischer 344 rats.
        Eur J Neurosci. 2002; 16: 607-618
        • Sprague J.E.
        • Banks M.L.
        • Cook V.J.
        • et al.
        Hypothalamic-pituitary-thyroid axis and sympathetic nervous system involvement in hyperthermia induced by 3,4-methylenedioxymethamphetamine (Ecstasy).
        J Pharmacol Exp Ther. 2003; 305: 159-166
        • Sprague J.E.
        • Mallett N.M.
        • Rusyniak D.E.
        • et al.
        UCP3 and thyroid hormone involvement in methamphetamine-induced hyperthermia.
        Biochem Pharmacol. 2004; 68: 1339-1343
        • Makisumi T.
        • Yoshida K.
        • Watanabe T.
        • et al.
        Sympatho-adrenal involvement in methamphetamine-induced hyperthermia through skeletal muscle hypermetabolism.
        Eur J Pharmacol. 1998; 363: 107-112
        • Sprague J.E.
        • Moze P.
        • Caden D.
        • et al.
        Carvedilol reverses hyperthermia and attenuates rhabdomyolysis induced by 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) in an animal model.
        Crit Care Med. 2005; 33: 1311-1316
        • Stuerenburg H.J.
        • Petersen K.
        • Baumer T.
        • et al.
        Plasma concentrations of 5-HT, 5-HIAA, norepinephrine, epinephrine and dopamine in ecstasy users.
        Neuro Endocrinol Lett. 2002; 23: 259-261
        • Pedersen N.P.
        • Blessing W.W.
        Cutaneous vasoconstriction contributes to hyperthermia induced by 3,4-methylenedioxymethamphetamine (ecstasy) in conscious rabbits.
        J Neurosci. 2001; 21: 8648-8654
        • Crandall C.G.
        • Vongpatanasin W.
        • Victor R.G.
        Mechanism of cocaine-induced hyperthermia in humans.
        Ann Intern Med. 2002; 136: 785-791
        • Zhao J.
        • Cannon B.
        • Nedergaard J.
        Alpha1-adrenergic stimulation potentiates the thermogenic action of beta3-adrenoreceptor–generated cAMP in brown fat cells.
        J Biol Chem. 1997; 272: 32847-32856
        • Mills E.M.
        • Rusyniak D.E.
        • Sprague J.E.
        The role of the sympathetic nervous system and uncoupling proteins in the thermogenesis induced by 3,4-methylenedioxymethamphetamine.
        J Mol Med. 2004; 82: 787-799
        • Mills E.M.
        • Banks M.L.
        • Sprague J.E.
        • et al.
        Uncoupling the agony from ecstasy.
        Nature. 2003; 426: 403-404
        • Nisijima K.
        • Yoshino T.
        • Yui K.
        • et al.
        Potent serotonin (5-HT)(2A) receptor antagonists completely prevent the development of hyperthermia in an animal model of the 5-HT syndrome.
        Brain Res. 2001; 890: 23-31
        • Mechan A.O.
        • Esteban B.
        • O'Shea E.
        • et al.
        The pharmacology of the acute hyperthermic response that follows administration of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) to rats.
        Br J Pharmacol. 2002; 135: 170-180
        • Van Oekelen D.
        • Megens A.
        • Meert T.
        • et al.
        Role of 5-HT(2) receptors in the tryptamine-induced 5-HT syndrome in rats.
        Behav Pharmacol. 2002; 13: 313-318
        • Blessing W.W.
        • Seaman B.
        • Pedersen N.P.
        • et al.
        Clozapine reverses hyperthermia and sympathetically mediated cutaneous vasoconstriction induced by 3,4-methylenedioxymethamphetamine (ecstasy) in rabbits and rats.
        J Neurosci. 2003; 23: 6385-6391
        • Rusyniak D.E.
        • Banks M.L.
        • Mills E.M.
        • et al.
        Dantrolene use in 3,4-methylenedioxymethamphetamine (ecstasy)–mediated hyperthermia.
        Anesthesiology. 2004; 101 ([author reply: 264]): 263
        • Singarajah C.
        • Lavies N.G.
        An overdose of ecstasy. A role for dantrolene.
        Anaesthesia. 1992; 47: 686-687
        • Watson J.D.
        • Ferguson C.
        • Hinds C.J.
        • et al.
        Exertional heat stroke induced by amphetamine analogues. Does dantrolene have a place?.
        Anaesthesia. 1993; 48: 1057-1060
        • Webb C.
        • Williams V.
        Ecstasy intoxication: appreciation of complications and the role of dantrolene.
        Anaesthesia. 1993; 48: 542-543
        • Graudins A.
        • Stearman A.
        • Chan B.
        Treatment of the serotonin syndrome with cyproheptadine.
        J Emerg Med. 1998; 16: 615-619
        • Lappin R.I.
        • Auchincloss E.L.
        Treatment of the serotonin syndrome with cyproheptadine.
        N Engl J Med. 1994; 331: 1021-1022
        • Gillman P.K.
        The serotonin syndrome and its treatment.
        J Psychopharmacol. 1999; 13: 100-109
        • Vogel W.H.
        • Miller J.
        • DeTurck K.H.
        • et al.
        Effects of psychoactive drugs on plasma catecholamines during stress in rats.
        Neuropharmacology. 1984; 23: 1105-1108
        • Zalis E.G.
        • Lundberg G.D.
        • Kaplan G.
        • et al.
        The effect of extracorporeal cooling on amphetamine toxicity.
        Arch Int Pharmacodyn Ther. 1966; 159: 189-195
        • Hadad E.
        • Rav-Acha M.
        • Heled Y.
        • et al.
        Heat stroke: a review of cooling methods.
        Sports Med. 2004; 34: 501-511
        • Chou Y.T.
        • Lai S.T.
        • Lee C.C.
        • et al.
        Hypothermia attenuates circulatory shock and cerebral ischemia in experimental heatstroke.
        Shock. 2003; 19: 388-393
        • Khan M.
        • Farver D.
        Recognition, assessment and management of neuroleptic malignant syndrome.
        S D J Med. 2000; 53: 395-400
        • Ananth J.
        • Parameswaran S.
        • Gunatilake S.
        • et al.
        Neuroleptic malignant syndrome and atypical antipsychotic drugs.
        J Clin Psychiatry. 2004; 65: 464-470
        • Balzan M.V.
        The neuroleptic malignant syndrome: a logical approach to the patient with temperature and rigidity.
        Postgrad Med J. 1998; 74: 72-76
        • Carbone J.R.
        The neuroleptic malignant and serotonin syndromes.
        Emerg Med Clin North Am. 2000; 18: 317-325
        • Caroff S.N.
        • Mann S.C.
        Neuroleptic malignant syndrome.
        Med Clin North Am. 1993; 77: 185-202
        • Nierenberg D.
        • Disch M.
        • Manheimer E.
        • et al.
        Facilitating prompt diagnosis and treatment of the neuroleptic malignant syndrome.
        Clin Pharmacol Ther. 1991; 50: 580-586
        • Rosebush P.
        • Stewart T.
        A prospective analysis of 24 episodes of neuroleptic malignant syndrome.
        Am J Psychiatry. 1989; 146: 717-725
        • Oppenheim G.
        Mutism and hyperthermia in a patient treated with neuroleptics.
        Med J Aust. 1973; 2: 228-229
        • Velamoor V.R.
        • Norman R.M.G.
        • Caroff S.N.
        • et al.
        Progression of symptoms in neuroleptic malignant syndrome.
        J Nerv Ment Dis. 1994; 182: 168-173
        • Rosebush P.I.
        • Mazurek M.F.
        Serum iron and neuroleptic malignant syndrome.
        Lancet. 1991; 338: 149-151
        • Friedman L.S.
        • Weinrauch L.A.
        • D'Elia J.A.
        Metoclopramide-induced neuroleptic malignant syndrome.
        Arch Intern Med. 1987; 147: 1495-1497
        • Pesola G.R.
        • Quinto C.
        Prochlorperazine-induced neuroleptic malignant syndrome.
        J Emerg Med. 1996; 14: 727-729
        • Chan-Tack K.M.
        Neuroleptic malignant syndrome due to promethazine.
        South Med J. 1999; 92: 1017-1018
        • Rainer C.
        • Scheinost N.A.
        • Lefeber E.J.
        Neuroleptic malignant syndrome. When levodopa withdrawal is the cause.
        Postgrad Med. 1991; 89 (180): 175-178
        • Olmsted T.R.
        Neuroleptic malignant syndrome: guidelines for treatment and reinstitution of neuroleptics.
        South Med J. 1988; 81: 888-891
        • Henderson V.W.
        • Wooten G.F.
        Neuroleptic malignant syndrome: a pathogenetic role for dopamine receptor blockade?.
        Neurology. 1981; 31: 132-137
        • Gurrera R.J.
        Sympathoadrenal hyperactivity and the etiology of neuroleptic malignant syndrome.
        Am J Psychiatry. 1999; 156: 169-180
        • Nisijima K.
        • Oyafuso K.
        • Shimada T.
        • et al.
        Cerebrospinal fluid monoamine metabolism in a case of neuroleptic malignant syndrome improved by electroconvulsive therapy.
        Biol Psychiatry. 1996; 39: 383-384
        • Feibel J.H.
        • Schiffer R.B.
        Sympathoadrenomedullary hyperactivity in the neuroleptic malignant syndrome: a case report.
        Am J Psychiatry. 1981; 138: 1115-1116
        • Gurrera R.J.
        • Romero J.A.
        Sympathoadrenomedullary activity in the neuroleptic malignant syndrome.
        Biol Psychiatry. 1992; 32: 334-343
        • Spivak B.
        • Maline D.I.
        • Vered Y.
        • et al.
        Prospective evaluation of circulatory levels of catecholamines and serotonin in neuroleptic malignant syndrome.
        Acta Psychiatr Scand. 2000; 102: 226-230
        • Dhib-Jalbut S.
        • Hesselbrock R.
        • Mouradian M.M.
        • et al.
        Bromocriptine treatment of neuroleptic malignant syndrome.
        J Clin Psychiatry. 1987; 48: 69-73
        • Janati A.
        • Webb R.T.
        Successful treatment of neuroleptic malignant syndrome with bromocriptine.
        South Med J. 1986; 79: 1567-1571
        • Verhoeven W.M.
        • Elderson A.
        • Westenberg H.G.
        Neuroleptic malignant syndrome: successful treatment with bromocriptine.
        Biol Psychiatry. 1985; 20: 680-684
        • Bismuth C.
        • de Rohan-Chabot P.
        • Goulon M.
        • et al.
        Dantrolene—a new therapeutic approach to the neuroleptic malignant syndrome.
        Acta Neurol Scand Suppl. 1984; 100: 193-198
        • Sakkas P.
        • Davis J.M.
        • Janicak P.G.
        • et al.
        Drug treatment of the neuroleptic malignant syndrome.
        Psychopharmacol Bull. 1991; 27: 381-384
        • Rosebush P.I.
        • Stewart T.
        • Mazurek M.F.
        The treatment of neuroleptic malignant syndrome. Are dantrolene and bromocriptine useful adjuncts to supportive care?.
        Br J Psychiatry. 1991; 159: 709-712
        • Schvehla T.J.
        • Herjanic M.
        Neuroleptic malignant syndrome, bromocriptine, and anticholinergic drugs.
        J Clin Psychiatry. 1988; 49: 283-284
        • Velamoor V.R.
        • Swamy G.N.
        • Parmar R.S.
        • et al.
        Management of suspected neuroleptic malignant syndrome.
        Can J Psychiatry. 1995; 40: 545-550
        • Lew T.Y.
        • Tollefson G.
        Chlorpromazine-induced neuroleptic malignant syndrome and its response to diazepam.
        Biol Psychiatry. 1983; 18: 1441-1446
        • Miyaoka H.
        • Shishikura K.
        • Otsubo T.
        • et al.
        Diazepam-responsive neuroleptic malignant syndrome: a diagnostic subtype?.
        Am J Psychiatry. 1997; 154: 882
        • Kontaxakis V.P.
        • Christodoulou G.N.
        • Markidis M.P.
        • et al.
        Treatment of a mild form of neuroleptic malignant syndrome with oral diazepam.
        Acta Psychiatr Scand. 1988; 78: 396-398
        • Sato Y.
        • Asoh T.
        • Metoki N.
        • et al.
        Efficacy of methylprednisolone pulse therapy on neuroleptic malignant syndrome in Parkinson's disease.
        J Neurol Neurosurg Psychiatry. 2003; 74: 574-576
        • Rosebush P.I.
        • Stewart T.D.
        • Gelenberg A.J.
        Twenty neuroleptic rechallenges after neuroleptic malignant syndrome in 15 patients.
        J Clin Psychiatry. 1989; 50: 295-298
        • Denborough M.A.
        • Lovell R.R.H.
        Anaesthetic deaths in a family.
        Lancet. 1960; 2: 45
        • Denborough M.
        Malignant hyperthermia.
        Lancet. 1998; 9134: 1131-1136
        • Loke J.
        • MacLennan D.H.
        Malignant hyperthermia and central core disease: disorders of Ca2+ release channels.
        Am J Med. 1998; 104: 470-486
        • Hopkins P.M.
        Malignant hyperthermia: advances in clinical management and diagnosis.
        Br J Anaesth. 2000; 85: 118-128
        • Naguib M.
        • Magboul M.M.
        Adverse effects of neuromuscular blockers and their antagonists.
        Drug Saf. 1998; 18: 99-116
        • Tobin J.R.
        • Jason D.R.
        • Challa V.R.
        • et al.
        Malignant hyperthermia and apparent heat stroke.
        JAMA. 2001; 286: 168-169
        • Wappler F.
        • Fiege M.
        • Steinfath M.
        • et al.
        Evidence for susceptibility to malignant hyperthermia in patients with exercise-induced rhabdomyolysis.
        Anesthesiology. 2001; 94: 95-100
        • Kaus S.J.
        • Rockoff M.A.
        Malignant hyperthermia.
        Pediatr Clin North Am. 1994; 41: 221-237
        • Haggendal J.
        • Jonsson L.
        • Carlsten J.
        The role of sympathetic activity in initiating malignant hyperthermia.
        Acta Anaesthesiol Scand. 1990; 34: 677-682
        • Williams C.H.
        • Dozier S.E.
        • Buzello W.
        • et al.
        Plasma levels of norepinephrine and epinephrine during malignant hyperthermia in susceptible pigs.
        J Chromatogr. 1985; 344: 71-80
        • Lister D.
        • Hall G.M.
        • Lucke J.N.
        Porcine malignant hyperthermia. III. Adrenergic blockade.
        Br J Anaesth. 1976; 48: 831-838
        • Lucke J.N.
        • Denny H.
        • Hall G.M.
        • et al.
        Porcine malignant hyperthermia. VI. The effects of bilateral adrenalectomy and pretreatment with bretylium on the halothane-induced response.
        Br J Anaesth. 1978; 50: 241-246
        • Maccani R.M.
        • Wedel D.J.
        • Hofer R.E.
        Norepinephrine does not potentiate porcine malignant hyperthermia.
        Anesth Analg. 1996; 82: 790-795
        • Gerdes C.
        • Richter A.
        • Annies R.
        • et al.
        Increase of serotonin in plasma during onset of halothane-induced malignant hyperthermia in pigs.
        Eur J Pharmacol. 1992; 220: 91-94
        • Loscher W.
        • Witte U.
        • Fredow G.
        • et al.
        Pharmacodynamic effects of serotonin (5-HT) receptor ligands in pigs: stimulation of 5-HT2 receptors induces malignant hyperthermia.
        Naunyn Schmiedebergs Arch Pharmacol. 1990; 341: 483-493
        • Fiege M.
        • Wappler F.
        • Weisshorn R.
        • et al.
        Induction of malignant hyperthermia in susceptible swine by 3,4-methylenedioxymethamphetamine (“ecstasy”).
        Anesthesiology. 2003; 99: 1132-1136
        • Gerbershagen M.U.
        • Wappler F.
        • Fiege M.
        • et al.
        Effects of a 5HT(2) receptor agonist on anaesthetized pigs susceptible to malignant hyperthermia.
        Br J Anaesth. 2003; 91: 281-284
        • Loscher W.
        • Gerdes C.
        • Richter A.
        Lack of prophylactic or therapeutic efficacy of 5-HT2A receptor antagonists in halothane-induced porcine malignant hyperthermia.
        Naunyn Schmiedebergs Arch Pharmacol. 1994; 350: 365-374
        • Ward A.
        • Chaffman M.O.
        • Sorkin E.M.
        Dantrolene. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in malignant hyperthermia, the neuroleptic malignant syndrome and an update of its use in muscle spasticity.
        Drugs. 1986; 32: 130-168
        • Nelson T.E.
        • Lin M.
        • Sapata-Sudo G.
        • et al.
        Dantrolene sodium can increase or attenuate activity of skeletal muscle ryanodine receptor calcium release channel: clinical implications.
        Anesthesiology. 1996; 84: 1368-1379
        • Jurkat-Rott K.
        • McCarthy T.
        • Lehmann-Horn F.
        Genetics and pathogenesis of malignant hyperthermia.
        Muscle Nerve. 2000; 23: 4-17
        • Wedel D.J.
        • Quinlan J.G.
        • Iaizzo P.A.
        Clinical effects of intravenously administered dantrolene.
        Mayo Clin Proc. 1995; 70: 241-246