Advertisement
Review article| Volume 24, ISSUE 1, P275-303, March 2004

Endocrine autoantibodies

      Many endocrine disorders are now recognized to be immune mediated. The presence of autoimmune disease increases an individual's risk for other autoimmune diseases whose early identification can prevent morbidity and even death. Autoimmunity usually develops in association with a series of specific human leukocyte antigen (HLA) alleles. In some disorders, such as celiac disease, an environmental triggering factor has been identified, but for most autoimmune endocrine disorders, environmental triggering factors are not identified, but the humoral and cellular arms of the immune system target self-antigens years before the onset of disease. The majority of endocrine-related autoantibodies are detected using radioimmunoassay methods, and many assays have been assessed in international workshops. There are still areas for improving the current assay methods, especially in sensitivity, specificity, and reproducibility. The challenges in improving autoantibody detection include defining assay characteristics that improve specificity (eg, recognition of multiple epitopes) while maintaining sensitivity. Ultimately, it will be beneficial to move away from using radioactive material. In this article, we review autoantibodies related to various endocrine and related disorders.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Diabetes Association
        Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.
        Diabetes Care. 1997; 20: 1183-1197
        • Barnett A.H.
        • Eff C.
        • Leslie R.D.
        • Pyke D.A.
        Diabetes in identical twins: a study of 200 pairs.
        Diabetologia. 1981; 20: 87-93
        • Atkinson M.A.
        • Eisenbarth G.S.
        Type 1 diabetes: new perspectives on disease pathogenesis and treatment.
        Lancet. 2001; 358: 221-229
        • Bennett S.T.
        • Todd J.A.
        Human type 1 diabetes and the insulin gene: principles of mapping polygenes.
        Annu Rev Genet. 1996; 30: 343-370
        • Pugliese A.
        • Zeller M.
        • Fernandez A.
        • et al.
        The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type I diabetes.
        Nat Genet. 1997; 15: 293-297
        • Vafiadis P.
        • Bennett S.T.
        • Todd J.A.
        • et al.
        Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus.
        Nat Genet. 1997; 15: 289-292
        • Pugliese A.
        • Brown D.
        • Garza D.
        • et al.
        Self-antigen presenting cells expressing IDDM-associated autoantigens exist in both thymus and peripheral lymphoid organs in humans.
        J Clin Invest. 2001; 107: 555-564
        • Norris J.M.
        • Beaty B.
        • Klingensmith G.
        • et al.
        Lack of association between early exposure to cow's milk protein and β-cell autoimmunity: Diabetes Autoimmunity Study in the Young (DAISY).
        JAMA. 1996; 276: 609-614
        • Murakami M.
        • Iriuchijima T.
        • Mori M.
        Diabetes mellitus and interferon-α therapy.
        Ann Intern Med. 1995; 123: 318
        • Moriyama H.
        • Wen L.
        • Abiru N.
        • et al.
        Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide.
        Proc Natl Acad Sci USA. 2002; 99: 5539-5544
        • Falorni A.
        • Örtqvist E.
        • Persson B.
        • Lernmark Å
        Radioimmunoassays for glutamic acid decarboxylase (GAD65) and GAD65 autoantibodies using 35S or 3H recombinant human ligands.
        J Immunol Methods. 1995; 186: 89-99
        • Gianani R.
        • Rabin D.U.
        • Verge C.F.
        • et al.
        ICA512 autoantibody radioassay.
        Diabetes. 1995; 44: 1340-1344
        • Yu L.
        • Rewers M.
        • Gianani R.
        • et al.
        Anti-islet autoantibodies develop sequentially rather than simultaneously.
        J Clin Endocrinol Metab. 1996; 81: 4264-4267
        • Williams A.J.
        • Bingley P.J.
        • Bonifacio E.
        • Palmer J.P.
        • Gale E.A.
        A novel micro-assay for insulin autoantibodies.
        J Autoimmun. 1997; 10: 473-478
        • Yu L.
        • Robles D.T.
        • Abiru N.
        • et al.
        Early expression of anti-insulin autoantibodies of man and the NOD mouse: evidence for early determination of subsequent diabetes.
        Proc Natl Acad Sci USA. 2000; 97: 1701-1706
        • Palmer J.P.
        • Asplin C.M.
        • Clemons P.
        • et al.
        Insulin antibodies in insulin-dependent diabetics before insulin treatment.
        Science. 1983; 222: 1337-1339
        • Baekkeskov S.
        • Aanstoot H.-J.
        • Christgau S.
        • et al.
        Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase.
        Nature. 1990; ([published erratum appears in Nature 1990;347:782]): 151-156
        • Rabin D.U.
        • Pleasic S.M.
        • Shapiro J.A.
        • et al.
        Islet cell antigen 512 is a diabetes-specific islet autoantigen related to protein tyrosine phosphatases.
        J Immunol. 1994; 152: 3183-3188
        • Rabin D.U.
        • Pleasic S.M.
        • Palmer-Crocker R.
        • Shapiro J.A.
        Cloning and expression of IDDM-specific human autoantigens.
        Diabetes. 1992; 41: 183-186
        • Wasmeier C.
        • Hutton J.C.
        Molecular cloning of phogrin, a protein-tyrosine phosphatase homologue localized to insulin secretory granule membranes.
        J Biol Chem. 1996; 271: 18161-18170
        • Castano L.
        • Russo E.
        • Zhou L.
        • Lipes M.A.
        • Eisenbarth G.S.
        Identification and cloning of a granule autoantigen (carboxypeptidase-H) associated with type I diabetes.
        J Clin Endocrinol Metab. 1991; 73: 1197-1201
        • Thomas N.M.
        • Ginsberg-Fellner F.
        • Mcevoy R.C.
        Strong association between diabetes and displacement of mouse anti-rat insulinoma cell monoclonal antibody by human serum in vitro.
        Diabetes. 1990; 39: 1203-1211
        • Karounos D.G.
        • Wolinsky J.S.
        • Thomas J.W.
        Monoclonal antibody to rubella virus capsid protein recognizes a β-cell antigen.
        J Immunol. 1993; 150: 3080-3085
        • Christie M.R.
        • Hollands J.A.
        • Brown T.J.
        • Michelsen B.K.
        • Delovitch T.L.
        Detection of pancreatic islet 64,000 Mr autoantigens in insulin-dependent diabetes distinct from glutamate decarboxylase.
        J Clin Invest. 1993; 22: 240-248
        • Roep B.O.
        • Kallan A.A.
        • Hazenbos W.L.W.
        • et al.
        T-cell reactivity to 38kD insulin-secretory-granule protein in patients with recent-onset type 1 diabetes.
        Lancet. 1991; 337: 1439-1441
        • Dotta F.
        • Previti M.
        • Lenti L.
        • et al.
        GM2–1 pancreatic islet ganglioside: identification and characterization of a novel islet-specific molecule.
        Diabetologia. 1995; 38: 1117-1121
        • Karjalainen J.
        • Martin J.M.
        • Knip M.
        • et al.
        A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus.
        N Engl J Med. 1992; 327: 302-307
        • Pietropaolo M.
        • Castano L.
        • Babu S.
        • et al.
        Islet cell autoantigen 69 kDa (ICA69): molecular cloning and characterization of a novel diabetes associated autoantigen.
        J Clin Invest. 1993; 92: 359-371
        • Elias D.
        • Cohen I.
        • Shechter Y.
        • Spirer Z.
        • Golander A.
        Antibodies to insulin receptor followed by anti-idiotype.
        Diabetes. 1987; 36: 348-354
        • Birk O.S.
        • Elias D.
        • Weiss A.S.
        • et al.
        NOD mouse diabetes: the ubiquitous mouse hsp60 is a beta-cell target antigen of autoimmune T cells.
        J Autoimmun. 1996; 9: 159-166
        • Lernmark Å
        • Freedman Z.R.
        • Hofmann C.
        • et al.
        Islet-cell-surface antibodies in juvenile diabetes mellitus.
        N Engl J Med. 1978; 299: 375-380
        • Martin S.
        • Wolf-Eichbaum D.
        • Duinkerken G.
        • et al.
        Development of type 1 diabetes despite severe hereditary B-lymphocyte deficiency.
        N Engl J Med. 2001; 345: 1036-1040
        • Yang M.
        • Charlton B.
        • Gautam A.M.
        Development of insulitis and diabetes in B cell-deficient NOD mice.
        J Autoimmun. 1997; 10: 257-260
        • Serreze D.V.
        • Fleming S.A.
        • Chapman H.D.
        • Richard S.D.
        • Leiter E.H.
        • Tisch R.M.
        B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice.
        J Immunol. 1998; 161: 3912-3918
        • Noorchashm H.
        • Lieu Y.K.
        • Noorchashm N.
        • et al.
        I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet beta cells of nonobese diabetic mice.
        J Immunol. 1999; 163: 743-750
        • Bottazzo G.F.
        • Florin-Christensen A.
        • Doniach D.
        Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies.
        Lancet. 1974; 2: 1279-1283
        • Genovese S.
        • Bonifacio E.
        • McNally J.M.
        • et al.
        Distinct cytoplasmic islet cell antibodies with different risks for type I (insulin-dependent) diabetes mellitus.
        Diabetologia. 1992; 35: 385-388
        • Thai A.-C.
        • Eisenbarth G.S.
        Natural history of IDDM.
        Diabetes Rev. 1993; 1: 1-14
        • Neufeld M.
        • Maclaren N.K.
        • Riley W.J.
        • et al.
        Islet cell and other organ-specific antibodies in US Caucasians and Blacks with insulin-dependent diabetes mellitus.
        Diabetes. 1980; 29: 589-592
        • Schatz D.
        • Krischer J.
        • Horne G.
        • et al.
        Islet cell antibodies predict insulin-dependent diabetes in United States school age children as powerfully as in unaffected relatives.
        J Clin Invest. 1994; 93: 2403-2407
        • Gianani R.
        • Pugliese A.
        • Bonner-Weir S.
        • et al.
        Prognostically significant heterogeneity of cytoplasmic islet cell antibodies in relatives of patients with type I diabetes.
        Diabetes. 1992; 41: 347-353
        • Mueller P.W.
        • Bingley P.J.
        • Bonifacio E.
        • Steinberg K.K.
        • Sampson E.J.
        Predicting type 1 diabetes using autoantibodies: the latest results from the diabetes autoantibody standardization program.
        Diabetes Technol Ther. 2002; 4: 397-400
        • Bonifacio E.
        • Genovese S.
        • Braghi S.
        • et al.
        Islet autoantibody markers in IDDM: risk assessment strategies yielding high sensitivity.
        Diabetologia. 1995; 38: 816-822
        • Kim J.
        • Richter W.
        • Aanstoot H.J.
        • et al.
        Differential expression of GAD65 and GAD67 in human, rat and mouse pancreatic islets.
        Diabetes. 1993; 42: 1799-1808
        • Gianani R.
        • Jackson R.
        • Eisenbarth G.S.
        Evidence that the autoantigen of restricted ICA is GAD.
        Diabetes Res Clin Prac. 1991; 14: S13
        • Powers A.C.
        • Bavik K.
        • Tremble J.
        • Daw K.
        • Scherbaum W.A.
        • Banga J.P.
        Comparative analysis of epitope recognition of glutamic acid decarboxylase (GAD) by autoantibodies from different autoimmune disorders.
        Clin Exp Immunol. 1999; 118: 349-356
        • Christie M.
        • Landin-Olsson M.
        • Sundkvist G.
        • Dahlquist G.
        • Lernmark Å
        • Baekkeskov S.
        Antibodies to a Mr-64,000 islet cell protein in Swedish children with newly diagnosed type I (insulin-dependent) diabetes.
        Diabetologia. 1988; 31: 597-602
        • Schmidli R.S.
        • Colman P.G.
        • Bonifacio E.
        • Bottazzo G.F.
        • Harrison L.C.
        High level of concordance between assays for glutamic acid decarboxylase antibodies: the first international glutamic acid decarboxylase antibody workshop.
        Diabetes. 1994; 43: 1005-1009
        • Yu L.
        • Cuthbertson D.D.
        • Maclaren N.
        • Jackson R.
        • Eisenbarth G.S.
        • Krischer J.
        Expression of GAD65 or ICA512(IA-2) autoantibodies amongst cytoplasmic ICA positive relatives is associated with eligibility for DPT-1.
        Diabetes. 2001; 50: 1735-1740
        • Krischer J.P.
        • Cuthbertson D.D.
        • Yu L.
        • et al.
        Screening strategies for the identification of multiple antibody-positive relatives of individuals with type 1 diabetes.
        J Clin Endocrinol Metab. 2003; 88: 103-108
        • Lan M.S.
        • Lu J.
        • Goto Y.
        • Notkins A.L.
        Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma.
        DNA Cell Biol. 1994; 13: 505-514
        • Kawasaki E.
        • Yu L.
        • Rewers M.J.
        • Hutton J.C.
        • Eisenbarth G.S.
        Definition of multiple ICA512/phogrin autoantibody epitopes and detection of intramolecular epitope spreading in relatives of patients with type 1 diabetes.
        Diabetes. 1998; 47: 733-742
        • Farilla L.
        • Tiberti C.
        • Luzzago A.
        • et al.
        Application of phage display peptide library to autoimmune diabetes: identification of IA-2/ICA512bdc dominant autoantigenic epitopes.
        Eur J Immunol. 2002; 32: 1420-1427
        • Ziegler A.-G.
        • Hummel M.
        • Schenker M.
        • Bonifacio E.
        Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB study.
        Diabetes. 1999; 48: 460-468
        • Hawa M.I.
        • Fava D.
        • Medici F.
        • et al.
        Antibodies to IA-2 and GAD65 in type 1 and type 2 diabetes: isotype restriction and polyclonality.
        Diabetes Care. 2000; 23: 228-233
        • Graham J.
        • Hagopian W.A.
        • Kockum I.
        • et al.
        Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes.
        Diabetes. 2002; 51: 1346-1355
        • Sanjeevi C.B.
        • Falorni A.
        • Kockum I.
        • Hagopian W.A.
        • Lernmark Å
        HLA and glutamic acid decarboxylase in human insulin-dependent diabetes mellitus.
        Diabet Med. 1996; 13: 209-217
        • Chen W.
        • Bergerot I.
        • Elliott J.F.
        • et al.
        Evidence that a peptide spanning the B-C junction of proinsulin is an early autoantigen epitope in the pathogenesis of type 1 diabetes.
        J Immunol. 2001; 167: 4926-4935
        • Berson S.A.
        • Yallow R.S.
        Quantitative aspects of the reaction between insulin and insulin-binding antibody.
        J Clin Invest. 1959; 38: 1996-2016
        • Hirata J.
        • Tominaga M.
        • Ito J.-I.
        • Noguchi A.
        Spontaneous hypoglycemia with insulin autoimmunity in Graves' disease.
        Ann Intern Med. 1974; 2: 214-218
        • Di Mario U.
        • Perfetti R.
        • Anastasi E.
        • et al.
        Autoantibodies to insulin do appear in non-diabetic patients with autoimmune disorders: comparison with anti-immunoglobulin antibodies and other autoimmune phenomena.
        Acta Endocrinol (Copenhagen). 1990; 122: 303-308
        • Castano L.
        • Ziegler A.G.
        • Ziegler R.
        • Shoelson S.
        • Eisenbarth G.S.
        Characterization of insulin autoantibodies in relatives of patients with type 1 diabetes.
        Diabetes. 1993; 42: 1202-1209
        • Greenbaum C.
        • Palmer J.P.
        • Kuglin B.
        • Kolb H.
        Insulin autoantibodies measured by radioimmunoassay methodology are more related to insulin-dependent diabetes mellitus than those measured by enzyme-linked immunosorbent assay: results of the Fourth International Workshop on the Standardization of Insulin Autoantibody Measurement.
        J Clin Endocrinol Metab. 1992; 74: 1040-1044
        • Vardi P.
        • Ziegler A.G.
        • Matthews J.H.
        • et al.
        Concentration of insulin autoantibodies at onset of type I diabetes: inverse log-linear correlation with age.
        Diabetes Care. 1988; 11: 736-739
        • Kimpimaki T.
        • Kulmala P.
        • Savola K.
        • et al.
        Natural history of beta-cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population.
        J Clin Endocrinol Metab. 2002; 87: 4572-4579
        • Pugliese A.
        • Bugawan T.
        • Moromisato R.
        • et al.
        Two subsets of HLA-DQA1 alleles mark phenotypic variation in levels of insulin autoantibodies in first degree relatives at risk for insulin-dependent diabetes.
        J Clin Invest. 1994; 93: 2447-2452
        • Bonifacio E.
        • Scirpoli M.
        • Kredel K.
        • Fuchtenbusch M.
        • Ziegler A.G.
        Early autoantibody responses in prediabetes are IgG1 dominated and suggest antigen-specific regulation.
        J Immunol. 1999; 163: 525-532
        • Abiru N.
        • Maniatis A.K.
        • Yu L.
        • et al.
        Peptide and MHC specific breaking of humoral tolerance to native insulin with the B:9-23 peptide in diabetes prone and normal mice.
        Diabetes. 2001; 50: 1274-1281
        • Osman A.A.
        • Uhlig H.
        • Thamm B.
        • Schneider-Mergener J.
        • Mothes T.
        Use of the phage display technique for detection of epitopes recognized by polyclonal rabbit gliadin antibodies.
        FEBS Lett. 1998; 433: 103-107
        • Folgori A.
        • Tafi R.
        • Meola A.
        • et al.
        A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera.
        EMBO J. 1994; 13: 2236-2243
      1. Devendra D, Galloway TS, Horton S, Evenden A, Keller U, Wilkin TJ. The use of phage display to distinguish insulin autoantibody (IAA) from insulin antibody (IA) idiotypes. Diabetologia, in press.

        • Bonifacio E.
        • Atkinson M.
        • Eisenbarth G.
        • et al.
        International Workshop on Lessons from Animal Models for Human Type 1 Diabetes: identification of insulin but not glutamic acid decarboxylase or IA-2 as specific autoantigens of humoral autoimmunity in nonobese diabetic mice.
        Diabetes. 2001; 50: 2451-2458
        • Rapoport B.
        • Chazenbalk G.D.
        • Jaume J.C.
        • McLachlan S.M.
        The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies.
        Endocr Rev. 1998; 19: 673-716
        • Brix T.H.
        • Kyvik K.O.
        • Hegedus L.
        What is the evidence of genetic factors in the etiology of Graves' disease? A brief review.
        Thyroid. 1998; 8: 727-734
        • Barbesino G.
        • Tomer Y.
        • Concepcion E.S.
        • Davies T.F.
        • Greenberg D.A.
        Linkage analysis of candidate genes in autoimmune thyroid disease: II. Selected gender-related genes and the X-chromosome. International Consortium for the Genetics of Autoimmune Thyroid Disease.
        J Clin Endocrinol Metab. 1998; 83: 3290-3295
        • Weetman A.P.
        Graves' disease.
        N Engl J Med. 2000; 343: 1236-1248
        • Coles A.J.
        • Wing M.
        • Smith S.
        • et al.
        Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis.
        Lancet. 1999; 354: 1691-1695
        • Davies T.F.
        • Roti E.
        • Braverman L.E.
        • DeGroot L.J.
        Thyroid controversy-stimulating antibodies.
        J Clin Endocrinol Metab. 1998; 83: 3777-3785
        • Zakarija M.
        • Mckenzie J.M.
        • Eidson M.S.
        Transient neonatal hypothyroidism: characterization of maternal antibodies to the thyrotropin receptor.
        J Clin Endocrinol Metab. 1990; 70: 1239-1246
        • Baker Jr., J.R.
        Autoimmune endocrine disease.
        JAMA. 1997; 278: 1931-1937
        • Kloos R.T.
        Thyroiditis.
        in: Robert E.R. Conn's current therapy. WB Saunders, Philadelphia2002: 634-641
        • Prentice L.M.
        • Phillips D.I.
        • Sarsero D.
        • Beever K.
        • McLachlan S.M.
        • Smith B.R.
        Geographical distribution of subclinical autoimmune thyroid disease in Britain: a study using highly sensitive direct assays for autoantibodies to thyroglobulin and thyroid peroxidase.
        Acta Endocrinol (Copenhagen). 1990; 123: 493-498
        • Demers L.M.
        • Spencer C.A.
        Laboratory medicine practice guidelines: laboratory support for the diagnosis and monitoring of thyroid disease.
        Clin Endocrinol. 2003; 58: 138-140
        • Endo T.
        • Kaneshige M.
        • Nakazato M.
        • Kogai T.
        • Saito T.
        • Onaya T.
        Autoantibody against thyroid iodide transporter in the sera from patients with Hashimoto's thyroiditis possesses iodide transport inhibitory activity.
        Biochem Biophys Res Commun. 1996; 228: 199-202
        • Farrell R.J.
        • Kelly C.P.
        Celiac sprue.
        N Engl J Med. 2002; 346: 180-188
        • Mylotte M.
        • Egan-Mitchell B.
        • McCarthy C.F.
        • McNicholl B.
        Incidence of coeliac disease in the West of Ireland.
        BMJ. 1973; 1: 703-705
        • Johnston S.D.
        • Watson R.G.
        • McMillan S.A.
        • Sloan J.
        • Love A.H.
        Coeliac disease detected by screening is not silent—simply unrecognized.
        QJM. 1998; 91: 853-860
        • Catassi C.
        • Ratsch I.M.
        • Fabiani E.
        • et al.
        High prevalence of undiagnosed coeliac disease in 5280 Italian students screen by antigliadin antibodies.
        Acta Paediatr. 1995; 84: 672-676
        • Howell M.D.
        • Austin R.K.
        • Kelleher D.
        • Nepom G.T.
        • Kagnoff M.F.
        An HLA-D region restriction fragment length polymorphism associated with celiac disease.
        J Exp Med. 1986; 164: 333-338
        • Lundin K.E.
        • Gjertsen H.A.
        • Scott H.
        • Sollid L.M.
        • Thorsby E.
        Function of DQ2 and DQ8 as HLA susceptibility molecules in celiac disease.
        Hum Immunol. 1994; 41: 24-27
        • Rolles C.J.
        • Myint T.O.
        • Sin W.K.
        • Anderson M.
        Proceedings: family study of coeliac disease.
        Gut. 1974; 15: 827
        • Stenhammar L.
        • Brandt A.
        • Wagermark J.
        A family study of coeliac disease.
        Acta Paediatr Scand. 1982; 71: 625-628
        • Polanco I.
        Gluten sensitive enteropathy in Spain: genetic and environmental factors.
        in: Proceedings of the International Symposium on Genetics of Coeliac Disease. MTP Press, Lancaster (England)1981: 211-231
        • Farre C.
        • Humbert P.
        • Vilar P.
        • et al.
        Serological markers and HLA-DQ2 haplotype among first-degree relatives of celiac patients. Catalonian Coeliac Disease Study Group.
        Dig Dis Sci. 1999; 44: 2344-2349
        • Falchuk Z.M.
        • Strober W.
        HL-A antigens and adult coeliac disease.
        Lancet. 1972; 2: 1310
        • Bao F.
        • Feal R.M.S.
        Endocrine and organ specific autoimmunity.
        in: Eisenbarth G.S. RG Landes, Georgetown1999: 85-96
        • Sjoberg K.
        • Alm R.
        • Ivarsson S.A.
        • Lindstrom C.
        • Eriksson S.
        Prevalence and clinical significance of gliadin antibodies in healthy children and adults.
        Scand J Gastroenterol. 1994; 29: 248-254
        • Maki M.
        • Hallstrom O.
        • Marttinen A.
        Reaction of human non-collagenous polypeptides with coeliac disease autoantibodies.
        Lancet. 1991; 338: 724-725
        • Fasano A.
        • Catassi C.
        Current approaches to diagnosis and treatment of celiac disease: an evolving spectrum.
        Gastroenterology. 2001; 120: 636-651
        • Williams A.J.
        • Norcross A.J.
        • Lock R.J.
        • Unsworth D.J.
        • Gale E.A.
        • Bingley P.J.
        The high prevalence of autoantibodies to tissue transglutaminase in first-degree relatives of patients with type 1 diabetes is not associated with islet autoimmunity.
        Diabetes Care. 2001; 24: 504-509
        • Shan L.
        • Molberg O.
        • Parrot I.
        • et al.
        Structural basis for gluten intolerance in celiac sprue.
        Science. 2002; 297: 2275-2279
        • Sommers S.C.
        Adrenal glands: Anderson's pathology.
        in: Kissane J.M. CV Mosby, St. Louis2002: 1429-1450
        • Betterle C.
        • Scalici C.
        • Presotto F.
        • et al.
        The natural history of adrenal function in autoimmune patients with adrenal autoantibodies.
        J Endocrinol. 1988; 117: 467-475
        • Betterle C.
        • Volpato M.
        • Greggio A.N.
        • Presotto F.
        Type 2 polyglandular autoimmune disease (Schmitd's syndrome).
        J Pediatr Endocrinol Metab. 1996; 9: 113-123
        • Tanaka H.
        • Perez M.S.
        • Powell M.
        • et al.
        Steroid 21-hydroxylase autoantibodies: measurements with a new immunoprecipitation assay.
        J Clin Endocrinol Metab. 1997; 82: 1440-1446
        • Betterle C.
        • Volpato M.
        • Rees Smith II, B.
        • et al.
        Adrenal cortex and steroid 21-hydroxylase autoantibodies in children with organ-specific autoimmune diseases: markers of high progression to clinical Addison's disease.
        J Clin Endocrinol Metab. 1997; 82: 939-942
        • Falorni A.
        • Nikoshkov A.
        • Laureti S.
        • et al.
        High diagnostic accuracy for idiopathic Addison's disease with a sensitive radiobinding assay for autoantibodies against recombinant human 21-hydroxylase.
        J Clin Endocrinol Metab. 1995; 80: 2752-2755
        • Betterle C.
        • Volpato M.
        • Pedini B.
        • Chen S.
        • Smith B.R.
        • Furmaniak J.
        Adrenal-cortex autoantibodies and steroid-producing cells autoantibodies in patients with Addison's disease: comparison of immunofluorescence and immunoprecipitation assays.
        J Clin Endocrinol Metab. 1999; 84: 618-622
        • Freeman M.
        • Weetman A.P.
        T and B cell reactivity to adrenal antigens in autoimmune Addison's disease.
        Clin Exp Immunol. 1992; 88: 275-279
        • Yu L.
        • Brewer K.W.
        • Gates S.
        • et al.
        DRB104 and DQ alleles: expression of 21-hydroxylase autoantibodies and risk of progression to Addison's disease.
        J Clin Endocrinol Metab. 1999; 84: 328-335
        • Myhre A.G.
        • Undlien D.E.
        • Lovas K.
        • et al.
        Autoimmune adrenocortical failure in Norway autoantibodies and human leukocyte antigen class II associations related to clinical features.
        J Clin Endocrinol Metab. 2002; 87: 618-623
        • Gambelunghe G.
        • Falorni A.
        • Ghaderi M.
        • et al.
        Microsatellite polymorphism of the MHC class I chain-related (MIC-A and MIC-B) genes marks the risk for autoimmune Addison's disease.
        J Clin Endocrinol Metab. 1999; 84: 3701-3707
        • Rebar R.W.
        • Connolly H.V.
        Clinical features of young women with hypergonadotropic amenorrhea.
        Fertil Steril. 1990; 53: 804-810
        • LaBarbera A.R.
        • Miller M.M.
        • Ober C.
        • Rebar R.W.
        Autoimmune etiology in premature ovarian failure.
        Am J Reprod Immunol Microbiol. 1988; 16: 115-122
        • Anderson J.R.
        • Goudie R.B.
        • Gray K.
        • Stuart-Smith D.A.
        Immunological features of idiopathic Addison's disease: an antibody to cells producing steroid hormones.
        Clin Exp Immunol. 1968; 3: 107-117
        • Kim T.J.
        • Anasti J.N.
        • Flack M.R.
        • Kimzey L.M.
        • Defensor R.A.
        • Nelson L.M.
        Routine endocrine screening for patients with karyotypically normal spontaneous premature ovarian failure.
        Obstet Gynecol. 1997; 89: 777-779
        • Ho P.C.
        • Tang G.W.
        • Fu K.H.
        • Fan M.C.
        • Lawton J.W.
        Immunologic studies in patients with premature ovarian failure.
        Obstet Gynecol. 1988; 71: 622-626
        • Damewood M.D.
        • Zacur H.A.
        • Hoffman G.J.
        • Rock J.A.
        Circulating antiovarian antibodies in premature ovarian failure.
        Obstet Gynecol. 1986; 68: 850-854
        • Irvine W.J.
        • Chand M.M.M.
        • Scarth L.
        • et al.
        Immunological aspects of premature ovarian failure associated with idiopathic Addison's disease.
        Lancet. 1968; 2: 883-887
        • Elder M.
        • Maclaren N.
        • Riley W.
        Gonadal autoantibodies in patients with hypogonadism and/or Addison's disease.
        J Clin Endocrinol Metab. 1981; 52: 1137-1142
        • Hoek A.
        • Schoemaker J.
        • Drexhage H.A.
        Premature ovarian failure and ovarian autoimmunity.
        Endocr Rev. 1997; 18: 107-134
        • Falorni A.
        • Laureti S.
        • Santeusanio F.
        Autoantibodies in autoimmune polyendocrine syndrome type II.
        Endocrinol Metab Clin North Am. 2002; 31: 369-389
        • Wheatcroft N.J.
        • Toogood A.A.
        • Li T.C.
        • Cooke I.D.
        • Weetman A.P.
        Detection of antibodies to ovarian antigens in women with premature ovarian failure.
        Clin Exp Immunol. 1994; 96: 122-128
        • Arif S.
        • Vallian S.
        • Farzaneh F.
        • et al.
        Identification of 3 beta-hydroxysteroid dehydrogenase as a novel target of steroid cell autoantibodies: association of autoantibodies with endocrine autoimmune disease.
        J Clin Endocrinol Metab. 1996; 81: 4439-4445
        • Arif S.
        • James A.
        • Donaldson P.
        • et al.
        Human leukocyte antigen-DQB1genotypes encoding aspirate at position 57 are associated with 3β-hydroxysteroid dehydrogenase autoimmunity in premature ovarian failure.
        J Clin Endocrinol Metab. 1998; 84: 1056-1060
        • Reimand K.
        • Peterson P.
        • Hyoty H.
        • et al.
        3beta-hydroxysteroid dehydrogenase autoantibodies are rare in premature ovarian failure.
        J Clin Endocrinol Metab. 2000; 85: 2324-2326
        • Thorpe E.S.
        • Handley H.E.
        Chronic tetany and chronic mycelial stomatitis in a child aged four-and-one-half years.
        Am J Dis Child. 1929; 38: 328-338
        • Leonard M.F.
        Chronic idiopathic hypoparathyroidism with superimposed Addison's disease in a child.
        J Clin Endocrinol Metab. 1946; 6: 493-495
        • Whitaker J.
        The syndrome of familial juvenile hypoadrenocorticism, hypoparathyroidism and superficial moniliasis.
        J Endocrinol. 1956; 16: 1374-1387
        • Aaltonen J.
        • Björses P.
        • Sandkuijl L.
        • Perheentupa J.
        • Peltonen L.
        An autosomal locus causing autoimmune disease: autoimmune polyglandular disease type I assigned to chromosome 21.
        Nat Genet. 1994; 8: 83-87
        • Nagamine K.
        • Peterson P.
        • Scott H.S.
        • et al.
        Positional cloning of the APECED gene.
        Nat Genet. 1997; 17: 393-398
        • Ahonen P.
        • Koskimies S.
        • Lokki M.L.
        • Tiilikainen A.
        • Perheentupa J.
        The expression of autoimmune polyglandular disease type I appears associated with several HLA-A antigens but not with HLA- DR.
        J Clin Endocrinol Metab. 1988; 66: 1152-1157
        • Maclaren N.K.
        • Neufeld M.
        Autoimmunity and endocrine diseases.
        in: Collu R. Pediatric endocrinology. Raven Press, New York1981: 597-631
        • Perheentupa J.
        APS-I/APECED: the clinical disease and therapy.
        Endocrinol Metab Clin North Am. 2002; 31: 295-320
        • Gylling M.
        • Tuomi T.
        • Bjorses P.
        • et al.
        Beta-cell autoantibodies, human leukocyte antigen II alleles, and type 1 diabetes in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy.
        J Clin Endocrinol Metab. 2000; 85: 4434-4440
        • Hedstrand H.
        • Ekwall O.
        • Haavik J.
        • et al.
        Identification of tyrosine hydroxylase as an autoantigen in autoimmune polyendocrine syndrome type I.
        Biochem Biophys Res Commun. 2000; 267: 456-461
        • Ekwall O.
        • Hedstrand H.
        • Haavik J.
        • et al.
        Pteridin-dependent hydroxylases as autoantigens in autoimmune polyendocrine syndrome type I.
        J Clin Endocrinol Metab. 2000; 85: 2944-2950
        • Neufeld M.
        • Maclaren N.K.
        • Blizzard R.M.
        Two types of autoimmune Addison's disease associated with different polyglandular autoimmune (PGA) syndromes.
        Medicine (Baltimore). 1981; 60: 355-362
        • Maes M.
        • Eisenbarth G.S.
        The polyglandular autoimmune syndromes.
        in: Volpé R. Contemporary endocrinology on autoimmune endocrinopathies. Humana Press, Totowa1999: 349-363
        • Bosi E.
        • Becker F.
        • Bonifacio E.
        • et al.
        Progression to type I diabetes in autoimmune endocrine patients with islet cell antibodies.
        Diabetes. 1991; 40: 977-984
        • Bevan J.S.
        • Othman S.
        • Lazarus J.H.
        • Parkes A.B.
        • Hall R.
        Reversible adrenocorticotropin deficiency due to probable autoimmune hypophysitis in a woman with postpartum thyroiditis.
        J Clin Endocrinol Metab. 1992; 74: 548-552
        • Pestell R.G.
        • Best J.D.
        • Alford F.P.
        Lymphocytic hypophysitis: the clinical spectrum of the disorder and evidence for an autoimmune pathogenesis.
        Clin Endocrinol. 1990; 33: 457-466
        • Thodou E.
        • Asa S.L.
        • Kontogeorgos G.
        • Kovacs K.
        • Horvath E.
        • Ezzat K.
        Clinical case seminar: lymphocytic hypophysitis: clinicopathological findings.
        J Clin Endocrinol Metab. 1995; 80: 2302-2311
        • Ozawa Y.
        • Shishiba Y.
        Recovery from lymphocytic hypophysitis associated with painless thyroiditis: clinical implications of circulating antipituitary antibodies.
        Acta Endocrinol (Copenhagen). 1993; 128: 493-498
        • Crock P.
        • Salvi M.
        • Miller A.
        • Wall J.
        • Guyda H.
        Detection of anti-pituitary autoantibodies by immunoblotting.
        J Immunol Methods. 1993; 162: 31-40