Advertisement
Review article| Volume 24, ISSUE 1, P1-18, March 2004

Download started.

Ok

Interferences in hormone immunoassays

      Immunoassays are more sensitive and more specific than most other clinical analytic assays; however, because animal antisera are essential parts of these assays they are subject to unique immunoglobulin-related interferences. Most of the analytic antisera are produced in animals, such as mice, rabbits, and goats. If the human immune system is exposed to these animal proteins, polyspecific heterophile antibodies may be produced that subsequently are present in the laboratory specimens and may interfere with immunoassays that use antisera from those species. In addition to the normal immune response to foreign exogenous proteins, patients who have autoimmune disorders also may produce autoantibodies to chemicals or proteins that are endogenous to that patient. These autoantibodies can interfere with analytic assays that are targeted to measure these endogenous entities. The nature of the antibody interferences and their potential adverse effects on the assay depend on the format used for the immunoassay and the characteristics of the analytic and endogenous antibodies. To help understand these potential interferences, the basic formats of competitive and immunometric immunoassay formats is reviewed [
      • Klee G.G
      Laboratory techniques for recognition of endocrine disorders.
      ].
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Klee G.G
        Laboratory techniques for recognition of endocrine disorders.
        in: Larsen P.R Williams textbook of endocrinology. 10th edition. WB Saunders, Philadelphia2003: 65-79
        • Torjesen P.A
        • Bjoro T
        Antibodies against (125)testosterone in patient's serum: a problem for the laboratory and the patient.
        Clin Chem. 1996; 42: 2047-2048
        • Hunter W.M
        • Budd P.S
        Circulating antibodies to ovine and bovine immunoglobulin in healthy subjects: a hazard or immunoassays.
        Lancet. 1980; 316: 1136
        • Howanitz P.F
        • Howanitz J.H
        • Lamberson H.V
        • Ennis K.M
        Incidence and mechanism of spurious increases in serum thyrotropin.
        Clin Chem. 1982; 28: 427-431
        • Després N
        • Grant A.M
        Antibody interference in thyroid assays: a potential for clinical misinformation.
        Clin Chem. 1998; 44: 440-454
        • Kahn B.B
        • Weintraub B.D
        • Csako G
        • Zweig M.H
        Factitious elevation of thyrotropin in a new ultrasensitive assay: implications for the use of monoclonal antibodies in “sandwich” immunoassay.
        J Clin Endocrinol Metab. 1988; 66: 526-533
        • Thompson R.J
        • Jackson A.P
        • Langlois N
        Circulating antibodies to mouse monoclonal immunoglobulins in normal subjects. Incidents, species specificity, and effect on a two site assay for creatine kinase-MB isoenzyme.
        Clin Chem. 1986; 32: 476-481
        • Katwa G
        • Komatireddy G
        • Walker S.E
        False positive elevation of cardiac troponin I in seropositive rheumatoid arthritis.
        J Rheumatol. 2001; 28: 2750-2751
        • Kaplan I.V
        • Levinson S.S
        When is a heterophile antibody not a heterophile antibody? When it is an antibody against a specific immunogen.
        Clin Chem. 1999; 45: 616-618
        • Boscato L.M
        • Stuart M.C
        Incidence and specificity of interference in two-site immunoassays.
        Clin Chem. 1986; 32: 1491-1495
        • Ward G
        • McKinnon L
        • Badrick T
        • Hickman P.E
        Heterophilic antibodies remain a problem for the immunoassay laboratory.
        Am J Clin Pathol. 1997; 108: 417-421
        • HAMA Survey Group
        Interlaboratory survey of methods for measuring human anti-mouse antibodies.
        Clin Chem. 1992; 38: 172-173
        • Kricka L.J
        Human anti-animal antibody interferences in immunological assays.
        Clin Chem. 1999; 45: 942-956
        • Klatt K.K
        • Klee G.G
        Significance of human anti-mouse antibodies (HAMA) in immunoassays.
        Clin Chem. 1997; 43: S137
        • Kricka L.J
        Interferences in immunoassay-still a threat.
        Clin Chem. 2000; 46 ([editorial]): 1037-1038
        • Levinson S.S
        • Miller J.J
        Towards a better understanding of heterophile (and the like) antibody interference wit modern immunoassays.
        Clin Chim Acta. 2002; 325: 1-15
        • Després N
        • Grant A.M
        Antibody interference in thyroid assays: a potential for clinical misinformation.
        Clin Chem. 1998; 44: 440-454
        • Volpé R
        Autoimmune endocrinopathies: aspects of pathogenesis and the role of immune assays in investigation and management.
        Clin Chem. 1994; 40: 2132-2135
        • Feldt-Rasmussen U
        Analytical and clinical performance goals for testing autoantibodies to thyroperoxidase, thyroglobulin, and thyrotropin receptor.
        Clin Chem. 1996; 42: 160-163
        • Ginsberg J
        • Segal D
        • Ehrlich R.M
        • Walfish P.G
        Inappropriate triiodothyronine (T3) and thyroxine (T4) radioimmunoassay levels secondary to circulating thyroid hormone autoantibodies.
        Clin Endocrinol. 1978; 8: 133-139
        • Vyas S.K
        • Wilkin T.J
        Thyroid hormone autoantibodies and their implications for free thyroid hormone measurement.
        J Endocrinol Invest. 1994; 17: 15-21
        • Ritter D
        • Brown W
        • Nahm M.H
        • Ladenson J.H
        • Scott M.G
        Endogenous serum antibodies that interfere with a common thyroid hormone uptake assay: characterization and prevalence.
        Clin Chem. 1994; 40: 1940-1943
        • Erali M
        • Bigelow R.B
        • Meikle A.W
        ELISA for thyroglobulin in serum: recovery studies to evaluate autoantibody interference and reliability of thyroglobulin values.
        Clin Chem. 1996; 42: 766-770
        • Spencer C.A
        • Takeuchi M
        • Kazarosyan C
        • Wang C
        • Guttler R.B
        • Singer P.A
        • et al.
        Serum thyroglobulin autoantibodies: prevalence. Influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma.
        J Clin Endocrinol Metab. 1998; 83: 1121-1127
        • Bohner J
        • von Pape K.W
        • Hannes W
        • Stegmann T
        False-negative immunoassay results for cardiac troponin I probably due to circulating troponin I autoantibodies.
        Clin Chem. 1996; 42: 2046
        • John R
        • Henley R
        • Shankland D
        Concentrations of free thyroxine and free triiodothyronine in serum of patients with thyroxine-and triiodothyronine-binding autoantibodies.
        Clin Chem. 1990; 36: 470-473
        • Sapin R
        • Schlienger J.L
        • Gasser F
        • Chambron J
        Anti-triiodothyronine auto-antibody interference in recent free thyroid hormone assays.
        Clin Biochem. 1996; 29: 89-92
        • Kairemo K.J.A
        • Kahn J.A
        • Taipale P.J
        Monoclonal gammopathy may disturb oestradiol measurement in the treatment and monitoring of in-vitro fertilization.
        Hum Reprod. 1999; 14: 2724-2726
        • Levinson S.S
        Test interferences from endogenous antibodies.
        J Clin Ligand Assay. 1997; 20: 180-189
        • Miffin T.E
        • Bruns D.E
        University of Virginia Case Conference-macroamylase, macro creatine kinase, and other macroenzymes.
        Clin Chem. 1985; 31: 1743-1748
        • Wu A.H.B
        • Bowers Jr., G.N
        Evaluation and comparison of immunoinhibition and immunoprecipitation methods for differentiating MB from BB and macro forms of creatine kinase isoenzymes in patients and healthy controls.
        Clin Chem. 1982; 28: 2017-2021
        • Smith C.R
        • Norman C.R
        Prolactin and growth hormone: molecular heterogeneity and measurement in serum.
        Ann Clin Biochem. 1990; 27: 542-550
        • Stolar M.W
        • Amburn K
        • Baumann G
        Plasma “big” and “big-big” growth hormone (GH) in man: an oligomeric series composed of structurally diverse GH monomers.
        J Clin Endocrinol Metab. 1984; 59: 212-218
        • Gilson G
        • Schmit P
        • Thix J
        • Hoffman J.P
        • Humbel R.L
        Prolactin results for samples containing macroprolactin are method and sample dependent.
        Technical Briefs Clin Chem. 2001; 47: 331-333
        • Fahie-Wilson M
        • Brunsden P
        • Surrey J
        • Everitt A
        Macroprolactin and the Roche Elecsys prolactin assay: characteristics of the reaction and detection by precipitation with polyethylene glycol.
        Clin Chem. 2000; 46: 1993-1995
        • Sapin R
        • Kertesz G
        Macroprolactin detection by precipitation with protein A-sepharose: a rapid screening method compared with polyethylene glycol precipitation.
        Technical Briefs Clin Chem. 2003; 49: 502-505
        • Sapin R
        • Gasser F
        • Schlienger J.L
        Familial dysalbuminemic hyperthyroxinemia and thyroid hormone autoantibodies: interference in current free thyroid hormone assays.
        Horm Res. 1996; 45: 139-141
        • Ebdrup L
        • Fisker S
        • Sorensen H.H
        • Ranke M.B
        • Orskov H
        Variety in growth hormone determinations due to use of different immunoassays and to the interference of growth hormone-binding protein.
        Horm Res. 1999; 51: 20-26
        • Strasburger C.J
        • Wu Z
        • Pflaum C.D
        • Dressendorfer R.A
        Immunofunctional assay of human growth hormone (hGH) in serum: a possible consensus for quantitative hGH measurement.
        J Clin Endocrinol Metab. 1996; 81: 2613-2620
        • Masters A
        • Hahnel R
        Investigation of sex hormone-binding globulin interference in direct radioimmunoassays for testosterone and estradiol.
        Clin Chem. 1989; 35: 979-984
        • Boots L.R
        • Potter S
        • Potter H.D
        • Azziz R
        Measurement of total serum testosterone levels using commercially available kits: high degree of between-kit variability.
        Fertil Steril. 1998; 69: 286-292
        • Morley J.E
        • Patrick P
        • Perry III, H.M
        Evaluation of assays available to measure free testosterone.
        Metab. 2002; 51: 554-559
        • Rosner W
        Errors in the measurement of plasma free testosterone.
        J Clin Endrocrinol Metab. 1997; 82 (comment): 2014-2015
        • Rinaldi S
        • Dechaud H
        • Biessy C
        • Morin-Raverot V
        • Toniolo P
        • Zeleniuch-Jacquotte A
        • et al.
        Reliability and validity of commercially available, direct radioimmunoassays for measurement of blood androgens and estrogens in postmenopausal women.
        Cancer Epidemiol Biomarkers Prev. 2001; 10: 757-765
        • McShane L.M
        • Dorgan J.F
        • Greenhut S
        • Damato J.J
        Reliability and validity of serum sex hormone measurements.
        Cancer Epidemiol Biomarkers Prev. 1996; 5: 923-928
        • Miller J.J
        • Valdes Jr., R
        Methods for calculating cross-reactivity in immunoassays.
        J Clin Immunoassay. 1992; 15: 97-107
        • Valdes Jr., R
        Unexpected suppression of immunoassay results by cross-reactivity: now a demonstrated cause for concern.
        Clin Chem. 2002; 48 ([editorial]): 405-406
        • Sinicco A
        • Raiteri R
        • Rossati A
        • Savarino A
        • De Perri G
        Efavirenz interference in estradiol ELISA assay.
        Clin Chem. 2000; 46 ([letter]): 734-735
        • Steimer W
        • Müller C
        • Eber B
        Digoxin assays: frequent, substantial, and potentially dangerous interference by spironolactone, canrenone, and other steroids.
        Clin Chem. 2002; 48: 507-516
        • Lévesque A
        • Letellier M
        • Dillon P.W
        • Grant A
        Analytical performance of Bayer Immuno 1 estradiol and progesterone assays.
        Clin Chem. 1997; 43: 1601-1609
        • Gruschke A
        • Kuhl H
        Validity of radioimmunological methods for determining free testosterone in serum.
        Fertil Steril. 2001; 76: 576-582
        • Wheeler M.J
        • D'Souza A
        • Matadeen J
        • Croos P
        Ciba Corning ACS:180 testosterone assay evaluated.
        Clin Chem. 1996; 42: 1445-1449
        • Leung Y.S
        • Dees K
        • Cyr R
        • Schloegel I
        • Kao P.C
        Falsely increased serum estradiol results reported in direct estradiol assays.
        Clin Chem. 1997; 43: 1250-1251
        • Stuart M.C
        • Ellis S
        • Gowlland L
        • Tuff S
        Lectins used to prepare serum free of glycoprotein hormones for use as a matrix in radioimmunoassay.
        Clin Chem. 1981; 27: 52-56
        • Felder R.A
        • Holl R.W
        • Martha Jr., P
        • Bauler G
        • Hellman P
        • Wills M.R
        • et al.
        Influence of matrix on concentrations of somatotropin measured in serum with commercial immunoradiometric assays.
        Clin Chem. 1989; 35: 1423-1426
        • Plavsic V
        • Rogic D
        • Dumic M
        • Ille J
        • Brkljacic L
        • Latin V
        • et al.
        Interferences with determination of 17-hydroxyprogesterone in amniotic fluid.
        Clin Chem. 1991; 37: 2154-2155
        • Schramm W
        • Smith R.H
        • Craig P.A
        • Grates H.E
        Testosterone concentration is increased in whole saliva, but not in ultrafiltrate, after toothbrushing.
        Clin Chem. 1993; 39: 519-521
        • Voss H.F
        Saliva as a fluid for measurement of estriol levels.
        Am J Obstet Gynecol. 1999; 180: S226-S236
        • Orozco P
        • Navarro M.A
        • Nolla J.M
        Salivary testosterone is associated with higher lumbar bone mass in premenopausal healthy women with normal levels of serum testosterone.
        Eur J Epidemiol. 2000; 16: 907-912
        • Shirtcliff E.A
        • Granger D.A
        • Schwartz E.B
        • Curran M.J
        • Booth A
        • Overman W.H
        Assessing estradiol in biobehavioral studies using saliva and blood spots: simple radioimmunoassay protocols, reliability, and comparative validity.
        Horm Behav. 2000; 38: 137-147
        • Courtenay-Luck N.S
        • Epenetos A.A
        • Winearls G
        • Ritter M.A
        Preexisting human anti-murine immunoglobulin reactivity due to polyclonal rheumatoid factors.
        Cancer Research. 1987; 47: 4520-4525
        • Krahn J
        • Parry D.M
        • Leroux M
        • Dalton J
        High percentage of false positive cardiac troponin 1 results in patients with rheumatoid factor.
        Clin Biochem. 1999; 32: 477-480
        • Norden A.G.W
        • Jackson R.A
        • Norden L.E
        • Griffin A.J
        • Barnes M.A
        • Little J.A
        Misleading results from immunoassays of serum free thyroxine in the presence of rheumatoid factor.
        Clin Chem. 1997; 43: 957-962
        • Martel J
        • Després N
        • Ahnadi C.E
        • Lachance J.F
        • Monticello J.E
        • Fink G
        • et al.
        Comparative multicentre study of a panel of thyroid tests using different automated immunoassay platforms and specimens at high risk of antibody interference.
        Clin Chem Lab Med. 2000; 38: 785-793
        • Bjerner J
        • Nustad K
        • Norum L.F
        • Olsen K.H
        • Bormer O.P
        Immunometric assay interference: incidence and prevention.
        Clin Chem. 2002; 48: 613-621
        • Kricka L.J
        Interferences in immunoassay-still a threat.
        Clin Chem. 2000; 46: 1037-1038
        • Cole L.A
        • Rinne K.M
        • Shahabi A
        • Omrani A
        False-positive hCG assay results leading to unnecessary surgery and chemotherapy and needless occurrences of diabetes and coma.
        Clin Chem. 1999; 45: 313-314
        • ACOG Committee Opinion
        Avoiding inappropriate clinical decisions based on false-positive human chorionic gonadotropin test results.
        Obstet Gynecol. 2002; 100: 1057-1059
        • Ismail A.A.A
        • Walker P.L
        • Cawood M.L
        • Barth J.H
        Interference in immunoassay is an undetermined problem.
        Ann Clin Biochem. 2002; 39: 366-373
        • Marks V
        False-positive immunoassay results: a multicenter survey of erroneous immunoassay results from assays of 74 analytes in 10 donors from 66 laboratories in seven countries.
        Clin Chem. 2002; 48: 2008-2016
        • Reinsberg J
        Different efficacy of various blocking reagents to eliminate interferences by human antimouse antibodies with a two-site immunoassays.
        Clin Biochem. 1996; 29: 145-148
        • Sapin R
        • Simon C
        False hyperprolactinemia corrected by the use of heterophilic antibody-blocking agent.
        Clin Chem. 2001; 47: 2184-2185
        • Oltrogge J.B
        • Baum R.P
        • Lema K.N
        • Donnerstag B
        • Hor G
        How to overcome the disturbing effects of human anti-mouse antibodies (HAMA) on in vitro assays.
        Int J Biol Markers. 1997; 12: 15-17
        • Madry N
        • Auerbach B
        • Schelp C
        Measures to overcome HAMA interferences in immunoassays.
        Anticancer Res. 1997; 17: 2883-2886
        • Butler S.A
        • Cole L.A
        Use of heterophilic antibody blocking agent (HBT) in reducing false-positive hCG results.
        Clin Chem. 2001; 47: 1332-1333
        • Preissner C.M
        • O'Kane D.J
        • Singh R.J
        • Morris J.C
        • Grebe S.K
        Phantoms in the assay tube: heterophile antibody interferences in serum thyroglobulin assays.
        JCEM. 2003; 88: 3069-3074
        • Braunstein G.D
        False-positive serum human chorionic gonadotropin results: causes, characteristics, and recognition.
        Am J Obstet Gynecol. 2002; 187: 217-224
        • Rotmensch S
        • Cole L.A
        False diagnosis and needless therapy of presumed malignant disease in women with false-positive human chorionic gonadotropin concentrations.
        Lancet. 2000; 335: 712-715
        • Cole L.A
        • Rinne K.M
        • Shahabi S
        • Omrani A
        False-positive hCG assay results leading to unnecessary surgery and chemotherapy and needless occurrences of diabetes and coma.
        Clin Chem. 1999; 45: 313-314
        • Johnson G.F
        • Feld R.D
        • Beranek J.M
        • Roberts P.L
        Two cases of immunoassay interference with clinical consequences.
        Clin Chem. 2000; 46 ([abstract]): A37
        • Mills J.N
        • Nguyen T.T
        • Williams R.D
        Falsely increased β-human chorionic gonadotropin with a testicular epidermoid cyst.
        J Urol. 2001; 166: 2314
        • Morgan B.R
        • Tarter T.H
        Serum heterophile antibodies interfere with prostate specific antigen test and result in over treatment in a patient with prostate cancer.
        J Urol. 2001; 166: 2311-2312
        • Roberts S.G
        • Blute M.L
        • Berstralh E.J
        • Slezak J.M
        • Zincke H
        PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer.
        Mayo Clin Proc. 2001; 76: 576-581
        • Reinsberg J
        Interferences with two-site immunoassays by human anti-mouse antibodies formed by patients treated with monoclonal antibodies: comparison of different blocking reagents.
        Clin Chem. 1998; 44: 1742-1744
        • Baum R.P
        • Niesen A
        • Hertel A
        • Nancy A
        • Hess H
        • Donnerstag B
        • et al.
        Activating anti-idiotypic human anti-mouse antibodies for immunotherapy of ovarian carcinoma.
        Cancer. 1994; 73: 1121-1125
        • Bertholf R.L
        • Johannsen L
        • Benrubi G
        False elevation of serum CA-125 level caused by human anti-mouse antibodies.
        Ann Clin Lab Sci. 2002; 32: 414-418
        • Koper N.P
        • Massuger F
        • Thomas C.M
        • Beyer C
        • Crooy M.J
        An illustration of the clinical relevance of detecting human antimouse antibody interference by affinity chromatography.
        Eur J Obstet Gynecol Reprod Biol. 1999; 86: 203-205
        • Tommasi M
        • Brocchi A
        • Cappellini A
        • Raspanti S
        • Mannelli M
        False serum calcitonin high levels using a non-competitive two-site IRMA.
        J Endocrinol Invest. 2001; 24: 356-360
        • Bieglmayer C
        • Niederle B
        • Vierhapper H
        Interference causes false high calcitonin levels with a commercial assay.
        J Endocrinol Invest. 2002; 25: 197
        • Brennan M.D
        • Klee G.G
        • Preissner C.M
        • Hay I.D
        Heterophilic serum antibodies: a cause for falsely elevated serum thyrotropin levels.
        Mayo Clin Proc. 1987; 62: 894-898
        • Spencer C.A
        • Takeuchi M
        • Kazarosyan M
        Current status and performance goals for serum thyrotropin (TSH) assays.
        Clin Chem. 1996; 42: 140-145
        • Wood J.M
        • Gordon D.L
        • Rudinger A.N
        • Brooks M.M
        Artifactual elevation of thyroid-stimulating hormone.
        Am J Med. 1991; 90: 261-262
        • Zweig M.H
        • Csako G
        • Reynolds J.C
        • Carrasquillo J.A
        Interference by iatrogenically induced anti-mouse IgG antibodies in a two-site immunometric assay for thyrotropin.
        Arch Pathol Lab Med. 1991; 115: 164-168
        • Landau-Levine M
        • Way B.A
        • Clutter W.E
        • Scott M.G
        • Gronowski A.M
        Antibody interference with the abbott axsym immunoassay for thyroid-stimulating hormone.
        Clin Chim Acta. 1999; 281: 177-180
        • Knoblock R.J
        • Lehman C.M
        • Smith R.A
        • Apple F.S
        • Roberts W.L
        False-positive axsym cardiac troponin I results in a 53-year-old woman.
        Arch Pathol Lab Med. 2002; 126: 606-609
        • Kazmierczak S.C
        • Catrou P.G
        • Briley K.P
        Transient nature of interference effects from heterophile antibodies: examples of interference with cardiac marker measurements.
        Clin Chem Lab Med. 2000; 38: 33-39
        • Sosolik R.C
        • Hitchcock C.L
        • Becker W.J
        Heterophilic antibodies produce spuriously elevated concentrations of the MB isoenzyme of creatine kinase in a selected patient population.
        Am J Clin Pathol. 1997; 107: 506-510