Advertisement
Review aricle| Volume 23, ISSUE 4, P801-821, December 2003

Download started.

Ok

Recent advances in laboratory procedures for pathogenic mycobacteria

      Mycobacteriology is an area in which technological advances are highly warranted, not only because of the clinical importance of members of the genus Mycobacterium but also because of their diversity, fastidiousness, and generally slow growth characteristics. The most notable species in this genus is Mycobacterium tuberculosis, but many other species also are primary pathogens [
      • Falkinham J.O.
      Epidemiology of infection by nontuberculous mycobacteria.
      ,
      • Wallace Jr., R.J.
      • Brown B.A.
      • Griffith D.E.
      Nosocomial outbreaks/ pseudo outbreaks caused by nontuberculous mycobacteria.
      ,
      • Wallace Jr., R.J.
      • O'Brien R.
      • Glassroth J.
      • et al.
      Diagnosis and treatment of disease caused by nontuberculous mycobacteria.
      ,
      • Wayne L.G.
      • Sramek H.A.
      Agents of newly recognized or infrequently encountered mycobacterial diseases.
      ]. Isolation of mycobacteria has traditionally been performed through the use of selective in vitro growth media. Conventional identification is usually pursued by biochemical testing and growth characteristics, and antimicrobial susceptibility testing is based on growth in the presence of the drug of interest [
      • Kent P.T.
      • Kubica G.P.
      Public health mycobacteriology: a guide for the level III laboratory.
      ,
      • Watterson S.A.
      • Drobniewski F.A.
      Modern laboratory diagnosis of mycobacterial infections.
      ].
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Falkinham J.O.
        Epidemiology of infection by nontuberculous mycobacteria.
        Clin Microbiol Rev. 1996; 9: 177-215
        • Wallace Jr., R.J.
        • Brown B.A.
        • Griffith D.E.
        Nosocomial outbreaks/ pseudo outbreaks caused by nontuberculous mycobacteria.
        Annu Rev Microbiol. 1998; 52: 453-490
        • Wallace Jr., R.J.
        • O'Brien R.
        • Glassroth J.
        • et al.
        Diagnosis and treatment of disease caused by nontuberculous mycobacteria.
        Am Rev Respir Dis. 1990; 142: 940-953
        • Wayne L.G.
        • Sramek H.A.
        Agents of newly recognized or infrequently encountered mycobacterial diseases.
        Clin Microbiol Rev. 1992; 5: 1-25
        • Kent P.T.
        • Kubica G.P.
        Public health mycobacteriology: a guide for the level III laboratory.
        US Department of Health and Human Services, Atlanta (GA)1985
        • Watterson S.A.
        • Drobniewski F.A.
        Modern laboratory diagnosis of mycobacterial infections.
        J Clin Pathol. 2000; 53: 727-732
        • Woods G.L.
        The mycobacteriology laboratory and new diagnostic techniques.
        Infect Dis Clin North Am. 2002; 16: 1-15
        • Heifets L.B.
        Drug susceptibility testing in the chemotherapy of mycobacterial infections.
        in: Heifets L.B. Drug susceptibility tests in the chemotherapy of tuberculosis. CRC Press, Boca Raton (FL)1991: 89-121
        • Middlebrook G.
        • Reggiardo Z.
        • Tigertt W.D.
        Automatable radiometric detection of growth of Mycobacterium tuberculosis in selective media.
        Am Rev Respir Dis. 1977; 115: 1066-1069
        • Hanna B.A.
        • Ebrahimzadeh A.
        • Elliott L.B.
        • et al.
        Multicenter evaluation of the BACTEC MGIT 960 System for recovery of mycobacteria.
        J Clin Microbiol. 1999; 37: 748-752
      1. Stitt DT, Kodsi SE. A rapid method for the growth and detection of mycobacteria in clinical and stock cultures (abstract C-115). In: Abstracts of the 94th General Meeting of the American Society for Microbiology. Washington, DC; 1994. p. 510.

        • Roberts G.D.
        • Hall L.
        • Wolk D.M.
        Mycobacteria.
        in: Truant A.L. Manual of commercial methods in clinical microbiology. ASM Press, Washington, DC2002: 256-273
        • Rohner P.
        • Ninet B.
        • Metral C.
        • et al.
        Evaluation of the MB/BacT system and comparison to the BACTEC 460 system and solid media for isolation of mycobacteria from clinical specimens.
        J Clin Microbiol. 1997; 35: 3127-3131
        • Ichiyama S.
        • Iinuma Y.
        • Yamori S.
        • et al.
        Mycobacterium growth indicator tube testing in conjunction with the Accuprobe or the AMPLICOR-PCR assay for detecting and identifying mycobacteria from sputum samples.
        J Clin Microbiol. 1997; 35: 2022-2025
        • Bergmann J.S.
        • Woods G.L.
        Clinical evaluation of the Roche Amplicor PCR Mycobacterium tuberculosis test for detection of M. tuberculosis in respiratory specimens.
        J Clin Microbiol. 1996; 34: 1083-1085
        • Bergmann J.S.
        • Keating W.E.
        • Woods G.L.
        Clinical evaluation of the BDProbeTec ET system for rapid detection of Mycobacterium tuberculosis.
        J Clin Microbiol. 2000; 38: 863-865
        • Spargo C.A.
        • Fraiser M.S.
        • Van Cleve M.
        • et al.
        Detection of Mycobacterium tuberculosis DNA using thermophilic strand displacement amplification.
        Mol Cell Probes. 1996; 10: 247-256
        • Tenover F.C.
        • Crawford J.T.
        • Huebner R.E.
        • et al.
        The resurgence of tuberculosis: is your laboratory ready?.
        J Clin Microbiol. 1993; 31: 767-770
        • Canetti G.
        • Froman S.
        • Grosset J.
        • et al.
        Mycobacteria: laboratory methods for testing drug sensitivity and resistance.
        Bull World Health Organ. 1963; 29: 565-578
        • Snider D.E.
        • Good Jr., R.G.
        • Kilburn J.
        • et al.
        Rapid susceptibility testing of Mycobacterium tuberculosis.
        Am Rev Respir Dis. 1981; 123: 402-406
        • Griffith M.
        • Barrett H.L.
        • Bodily H.L.
        • et al.
        Drug susceptibility tests for tuberculosis using drug impregnated discs.
        Am J Clin Pathol. 1996; 47: 812-817
        • Bemer P.
        • Palicova F.
        • Rüsch-Gerdes S.
        • et al.
        Multicenter evaluation of fully automated BACTEC Mycobacteria Growth Indicator Tube 960 System for susceptibility testing of Mycobacterium tuberculosis.
        J Clin Microbiol. 2002; 40: 150-154
        • Pfyffer G.E.
        • Palicova F.
        • Rusch-Gerdes S.
        Testing of susceptibility of Mycobacterium tuberculosis to pyrazinamide with the nonradiometric BACTEC MGIT 960 System.
        J Clin Microbiol. 2002; 40: 1670-1674
        • Bergmann J.S.
        • Woods G.L.
        Evaluation of the ESP Culture System II for testing susceptibilities of Mycobacterium tuberculosis isolates to four primary antituberculosis drugs.
        J Clin Microbiol. 1998; 36: 2940-2943
        • Brunello F.
        • Fontana R.
        Reliability of the MB/BacT system for testing susceptibility of Mycobacterium tuberculosis complex isolates to antituberculosis drugs.
        J Clin Microbiol. 2000; 38: 872-873
        • National Committee for Clinical Laboratory Standards
        Susceptibility testing of mycobacteria, nocardia and other aerobic actinomycetes. Tentative standard M24–T2.
        2nd edition. National Committee for Clinical Laboratory Standards, Wayne (PA)2000
        • Yajko D.M.
        • Madej J.J.
        • Lancaster M.V.
        • et al.
        Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis.
        Antimicrob Agents Chemother. 1995; 33: 2324-2327
        • Collins L.A.
        • Franzblau S.G.
        Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium.
        Antimicrob Agents Chemother. 1997; 41: 1004-1009
        • Fabry W.
        • Schmid E.N.
        • Ansorg R.
        Comparison of the E test and a proportion dilution method for susceptibility testing of Mycobacterium avium complex.
        J Med Microbiol. 1996; 44: 227-230
        • Hoffner S.E.
        • Klintz L.
        • Olsson-Liljequist B.
        • et al.
        Evaluation of Etest for rapid susceptibility testing of Mycobacterium chelonae and M. fortuitum.
        J Clin Microbiol. 1994; 32: 1846-1849
        • Wanger A.
        • Mills K.
        Testing of Mycobacterium tuberculosis susceptibility to ethambutol, isoniazid, rifampin, and streptomycin by using Etest.
        J Clin Microbiol. 1996; 34: 1672-1676
        • Hazbon M.H.
        • del Socorro Orozco M.
        • Labrada L.A.
        • et al.
        Evaluation of Etest for susceptibility testing of multidrug-resistant isolates of Mycobacterium tuberculosis.
        J Clin Microbiol. 2000; 38: 4599-4603
        • Jacobs Jr., W.R.
        • Barletta R.
        • Udani R.
        • et al.
        Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages.
        Science. 1993; S260: 819-822
        • Eltringham I.J.
        • Wilson S.M.
        • Drobniewski F.A.
        • et al.
        Evaluation of a bacteriophage-based assay (phage amplified biologically assay) as a rapid screen for resistance to isoniazid, ethambutol, streptomycin, pyrazinamide, and ciprofloxacin among clinical isolates of Mycobacterium tuberculosis.
        J Clin Microbiol. 1999; 37: 3528-3532
        • Wilson S.M.
        • Al-Suwaidi Z.
        • McNerney R.
        • et al.
        Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis.
        Nat Med. 1997; 3: 465-468
        • Norden M.A.
        • Kurzynski T.A.
        • Bownds S.E.
        • et al.
        Rapid susceptibility testing of Mycobacterium tuberculosis (H37Ra) by flow cytometry.
        J Clin Microbiol. 1995; 33: 1231-1237
        • Tenover F.C.
        Diagnostic deoxyribonucleic acid probes for infectious diseases.
        Clin Microbiol Rev. 1988; 1: 82-101
        • Birkenmeyer L.G.
        • Mushahwar I.K.
        DNA probe amplificaton methods.
        J Virol Meth. 1991; 35: 117-126
        • Telenti A.
        • Persing D.H.
        Novel strategies for the detection of drug resistance in Mycobacterium tuberculosis.
        Res Microbiol. 1996; 147: 73-79
        • Wolcott M.J.
        Advances in nucleic acid-based detection methods.
        Clin Microbiol Rev. 1992; 5: 370-386
        • Scorpio A.
        • Zhang Y.
        Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, causing resistance to the antituberculosis drug pyrazinamide in tubercle bacillus.
        Nat Med. 1996; 2: 662-667
        • Morlock G.
        • Crawford J.
        • Butler W.R.
        • et al.
        Phenotypic characterization of pncA mutants of Mycobacterium tuberculosis.
        Antimicrob Agents Chemother. 2000; 44: 2291-2295
        • Lee A.S.G.
        • Lim I.H.K.
        • Tang L.L.H.
        • et al.
        Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore.
        Antimicrob Agents Chemother. 1999; 43: 2087-2089
        • Mokrousov I.
        • Narvskaya O.
        • Otten Y.
        • et al.
        High prevalence of katG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia, 1996 to 2001.
        Antimicrob Agents Chemother. 2002; 46: 1417-1424
        • Mokrousov I.
        • Otten T.
        • Filipenko M.
        • et al.
        Detection of isoniazid-resistant Mycobacterium tuberculosis strains by a multiplex allele-specific PCR assay targeting katG codon 315 variation.
        J Clin Microbiol. 2002; 40: 2509-2512
        • Musser J.M.
        Antimicrobial agent resistance in mycobacteria: molecular genetic insights.
        Clin Microbiol Rev. 1995; 8: 496-514
        • Ramaswamy S.
        • Musser J.
        Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update.
        Tuber Lung Dis. 1998; 79: 3-29
        • Rattan A.
        • Kalia A.
        • Ahmad N.
        Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives.
        Emerg Infect Dis. 1998; 4: 195-209
        • Miller L.P.
        • Crawford J.T.
        • Shinnick T.M.
        The rpoB gene of Mycobacterium tuberculosis.
        Antimicrob Agents Chemother. 1994; 38: 805-811
        • Kapur V.
        • Li L.-L.
        • Hamrick M.R.
        • et al.
        Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing.
        Arch Pathol Lab Med. 1995; 119: 131-138
        • Telenti A.
        • Honore N.
        • Bernasconi C.
        • et al.
        Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level.
        J Clin Microbiol. 1997; 35: 719-723
        • Telenti A.
        • Imboden P.
        • Marchesi F.
        • et al.
        Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis.
        Lancet. 1993; 341: 647-650
        • Sreevatsan S.
        • Stockbauer K.E.
        • Pan X.
        • et al.
        Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations.
        Antimicrob Agents Chemother. 1997; 41: 1677-1681
        • Cooksey R.C.
        • Morlock G.P.
        • McQueen A.
        • et al.
        Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City.
        Antimicrob Agents Chemother. 1996; 40: 1186-1188
        • Honore N.
        • Cole S.T.
        Streptomycin resistance in mycobacteria.
        Antimicrob Agents Chemother. 1994; 38: 238-242
        • Meier A.
        • Sander P.
        • Schaper K.J.
        • et al.
        Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis.
        Antimicrob Agents Chemother. 1996; 40: 2452-2454
        • Gillespie S.H.
        Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective.
        Antimicrob Agents Chemother. 2002; 46: 267-274
        • Sreevatsan S.
        • Pan X.
        • Stockbauer K.E.
        • et al.
        Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities.
        Antimicrob Agents Chemother. 1996; 40: 1024-1026
        • Blanchard J.S.
        Molecular mechanisms of drug resistance in Mycobacterium tuberculosis.
        Annu Rev Biochem. 1996; 65: 215-239
        • Fluit A.C.
        • Visser M.R.
        • Schmitz F.-J.
        Molecular detection of antimicrobial resistance.
        Clin Microbiol Rev. 2001; 14: 836-871
        • Louie M.
        • Cockerill III, F.R.
        Phenotypic and genotypic tests for bacteria and mycobacteria.
        Infect Dis Clin North Am. 2001; 15: 1205-1226
        • Soini H.
        • Musser J.
        Molecular diagnosis of tuberculosis.
        Clin Chem. 2001; 47: 809-814
        • De Beenhouwer H.
        • Lhiang Z.
        • Jannes G.
        • et al.
        Rapid detection of rifampicin resistance in sputum and biospy specimens from tuberculosis patients by PCR and line probe assay.
        Tuber Lung Dis. 1995; 76: 425-430
        • Cooksey R.C.
        • Morlock G.P.
        • Glickman S.
        • et al.
        Evaluation of a line probe assay kit for characterization of rpoB mutations in rifampin-resistant Mycobacterium tuberculosis isolates from New York City.
        J Clin Microbiol. 1997; 35: 1281-1283
        • Nash K.
        • Gaytan A.
        • Inderlied C.B.
        Detection of rifampin resistance in Mycobacterium tuberculosis by use of a rapid, simple, and specific RNA/RNA mismatch assay.
        J Infect Dis. 1997; 176: 533-536
        • Hongyo T.
        • Buzard G.S.
        • Calvert J.
        • et al.
        “Cold SSCP”: a simple, rapid and non-radioactive method for optimized single-strand conformation polymorphism analyses.
        Nucleic Acids Res. 1993; 21: 3637-3642
        • Telenti A.
        • Imboden P.
        • Marchesi F.
        • et al.
        Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism.
        Antimicrob Agents Chemother. 1993; 37: 2054-2058
        • Cooksey R.C.
        • Morlock G.P.
        • Holloway B.P.
        • et al.
        Comparison of two non-radioactive, single-strand conformation polymorphism electrophoretic methods for identification of rpoB mutations in rifampin-resistant isolates of Mycobacterium tuberculosis.
        Mol Diagn. 1998; 3: 73-80
        • Davies A.P.
        • Billington O.J.
        • McHugh T.D.
        • et al.
        Comparison of phenotypic and genotypic methods for pyrazinamide susceptibility testing with Mycobacterium tuberculosis.
        J Clin Microbiol. 2000; 38: 3686-3688
        • Heym B.
        • Alzari P.M.
        • Honore N.
        • et al.
        Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis.
        Mol Microbiol. 1995; 15: 235-245
        • Yap E.P.
        • McGee J.O.
        Nonisotopic SSCP detection in PCR products by ethidium bromide staining.
        Trends Genet. 1992; 8: 49
        • Cooksey R.C.
        • Morlock G.P.
        • Holloway B.P.
        • et al.
        Temperature-mediated heteroduplex analysis performed by using denaturing high-performance liquid chromatography to identify sequence polymorphisms in Mycobacterium tuberculosis complex organisms.
        J Clin Microbiol. 2002; 40: 1610-1616
        • Liu Y.P.
        • Behr M.A.
        • Small P.M.
        • et al.
        Genotypic determination of Mycobacterium tuberculosis antibiotic resistance using a novel mutation detection method, the branch migration inhibition M. tuberculosis antibiotic resistance test.
        J Clin Microbiol. 2000; 38: 3656-3662
        • Scarpellini P.
        • Braglia P.
        • Carrera S.
        • et al.
        Detection of rifampin resistance in Mycobacterium tuberculosis by double gradient-denaturing gradient gel electrophoresis.
        Antimicrob Agents Chemother. 1999; 43: 2550-2554
        • Sreevatsan S.
        • Kreiswirth B.N.
        • Cave M.D.
        • et al.
        Identification of a polymorphic nucleotide in oxyR specific for Mycobacterium bovis.
        J Clin Microbiol. 1996; 34: 2007-2010
        • Edwards K.J.
        • Metherell L.A.
        • Yates M.
        • et al.
        Detection of rpoB mutations in Mycobacterium tuberculosis by biprobe analysis.
        J Clin Microbiol. 2001; 39: 3350-3352
        • Viedma D.G.D.
        • Infantes M.
        • Lasala F.
        • et al.
        New real-time PCR able to detect in a single tube multiple rifampin resistance mutations and high-level isoniazid resistance mutations in Mycobacterium tuberculosis.
        J Clin Microbiol. 2002; 40: 988-995
        • Cooksey R.C.
        • Holloway B.P.
        • Oldenburg M.C.
        • et al.
        Evaluation of the invader assay, a linear signal amplification method, for identification of mutations associated with resistance to rifampin and isoniazid in Mycobacterium tuberculosis.
        Antimicrob Agents Chemother. 2000; 44: 1296-1301
        • El-Hajj H.H.
        • Marras S.A.E.
        • Tyagi S.
        • et al.
        Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons.
        J Clin Microbiol. 2001; 39: 4131-4137
        • Piatek A.S.
        • Telenti A.
        • Murray M.R.
        • et al.
        Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing.
        Antimicrob Agents Chemother. 2000; 44: 103-110
        • Fisher M.A.
        • Plikaytis B.B.
        • Shinnick T.M.
        Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes.
        J Bacteriol. 2002; 184: 4025-4032
        • Wilson M.
        • DeRisi J.
        • Kristensen H.H.
        • et al.
        Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization.
        Proc Natl Acad Sci U S A. 1999; 96: 12833-12838
        • Kivi M.
        • Liu X.
        • Raychaudhuri S.
        • et al.
        Determining the genomic locations of repetitive DNA sequences with a whole-genome microarray: IS6110 in Mycobacterium tuberculosis.
        J Clin Microbiol. 2002; 40: 2192-2198
        • Mikhailovich V.
        • Lapa S.
        • Gryadunov D.
        • et al.
        Identification of rifampin-resistant Mycobacterium tuberculosis strains by hybridization, PCR, and ligase detection reaction on oligonucleotide microchips.
        J Clin Microbiol. 2001; 39: 2531-2540
        • van soolingen D.
        Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements.
        J Intern Med. 2001; 249: 1-26
        • Eisenach K.D.
        • Crawford J.T.
        • Bates J.H.
        Repetitive DNA sequences as probes for Mycobacterium tuberculosis.
        J Clin Microbiol. 1988; 26: 2240-2245
        • Thierry D.
        • Cave M.D.
        • Eisenach K.D.
        • et al.
        IS6110, an IS-like element of Mycobacterium tuberculosis complex.
        Nucleic Acids Res. 1990; 18: 188
        • van Embden J.D.A.
        • Cave M.D.
        • Crawford J.T.
        • et al.
        Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology.
        J Clin Microbiol. 1993; 31: 406-409
        • Haas W.H.
        • Butler W.R.
        • Woodley C.L.
        • et al.
        Mixed-linker PCR: a new method for rapid fingerprinting of isolates of the Mycobacterium tuberculosis complex.
        J Clin Microbiol. 1993; 31: 1293-1298
        • Kamerbeek J.
        • Schouls L.
        • Kolk A.
        • et al.
        Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology.
        J Clin Microbiol. 1997; 35: 907-914
        • Dale J.
        • Brittain D.
        • Cataldi A.A.
        • et al.
        Spacer oligonucleotide typing of bacteria of the Mycobacterium tuberculosis complex: recommendations for standardised nomenclature.
        Int J Tuberc Lung Dis. 2001; 5: 216-219
        • Goyal M.
        • Saunders N.A.
        • van Embdem J.D.
        • et al.
        Differentiation of Mycobacterium tuberculosis isolates by spologotyping and IS6110 restriction fragment length polymorphism.
        J Clin Microbiol. 1997; 35: 647-651
        • Soini H.
        • Pan X.
        • Teeter L.
        • et al.
        Transmission dynamics and molecular characterization of Mycobacterium tuberculosis isolates with low copy numbers of IS6110.
        J Clin Microbiol. 2001; 39: 217-221
        • Supply P.
        • Mazars E.
        • Lesjean S.
        • et al.
        Variable human mini-satellite-like regions in the Mycobacterium tuberculosis genome.
        Mol Microbiol. 2000; 36: 762-771
        • Cowan L.S.
        • Mosher L.
        • Diem L.
        • et al.
        Variable-number tandem repeat typing of Mycobacterium tuberculosis with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units.
        J Clin Microbiol. 2002; 40: 1592-1602
        • Supply P.
        • Lesjean S.
        • Savine S.
        • et al.
        Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units.
        J Clin Microbiol. 2001; 39: 3563-3571
        • Butler W.R.
        • Jost Jr., J.C.
        • Kilburn J.O.
        Identification of mycobacteria by high-performance liquid chromatography.
        J Clin Microbiol. 1991; 29: 2468-2472
        • HPLC Users Group
        Standardized method for HPLC identification of mycobacteria.
        Centers for Disease Control and Prevention, Atlanta, GA1996
        • Jost Jr., K.C.J.
        • Dunbar D.F.
        • Barth S.S.
        • et al.
        Identification of Mycobacterium tuberculosis and M. avium complex directly from smear-positive sputum specimens and BACTEC 12B cultures by high-performance liquid chromatography with fluorescence detection and computer-driven pattern recognition models.
        J Clin Microbiol. 1995; 33: 1270-1277
        • Lebrun L.
        • Espinasse F.
        • Poveda J.D.
        • et al.
        Evaluation of non-radioactive DNA probes for identification of mycobacteria.
        J Clin Microbiol. 1992; 30: 2476-2478
        • Telenti A.
        • Marchesi F.
        • Balz M.
        • et al.
        Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis.
        J Clin Microbiol. 1993; 31: 175-178
        • Shinnick T.M.
        The 65-kilodalton antigen of Mycobacterium tuberculosis.
        J Bacteriol. 1987; 169: 1080-1088
        • Plikaytis B.B.
        • Plikaytis B.D.
        • Yakrus M.A.
        • et al.
        Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis.
        J Clin Microbiol. 1992; 30: 1815-1822
        • Avaniss-Aghajani E.
        • Jones K.
        • Holtzman A.
        • et al.
        Molecular technique for rapid identification of mycobacteria.
        J Clin Microbiol. 1996; 34: 98-102
        • Hernandez S.M.
        • Morlock G.P.
        • Butler W.R.
        • et al.
        Identification of Mycobacterium species by PCR-restriction fragment length polymorphism analyses using fluorescence capillary electrophoresis.
        J Clin Microbiol. 1999; 37: 3688-3692
        • Park H.
        • Jang H.
        • Kim C.
        • et al.
        Detection and identification of mycobacteria by amplification of the internal transcribed spacer regions with genus- and species-specific PCR primers.
        J Clin Microbiol. 2000; 38: 4080-4085
        • Roth A.
        • Reischl U.
        • Streubel A.
        • et al.
        Novel diagnostic algorithm for identification of mycobacteria using genus-specific amplification of the 16S–23S rRNA gene spacer and restriction endonucleases.
        J Clin Microbiol. 2000; 38: 1094-1104
        • Wong D.A.
        • Yip P.C.W.
        • Cheung D.T.L.
        • et al.
        Simple and rational approach to the identification of Mycobacterium tuberculosis, Mycobacterium avium complex species, and other commonly isolated mycobacteria.
        J Clin Microbiol. 2001; 39: 3768-3771
        • Makinen J.A.
        • Sarkola A.
        • Marjamaki M.
        • et al.
        Evaluation of GenoType and LiPA mycobacteria assays for identification of Finnish mycobacterial isolates.
        J Clin Microbiol. 2002; 40: 3478-3481
        • Tortoli E.
        • Nanetti A.
        • Piersimoni C.
        • et al.
        Performance assessment of new multiplex probe assay for identification of mycobacteria.
        J Clin Microbiol. 2001; 39: 1079-1087
        • Kirschner P.
        • Springer B.
        • Vogel U.
        • et al.
        Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory.
        J Clin Microbiol. 1993; 31: 2882-2889
        • Guerrero C.
        • Bernasconi C.
        • Burki D.
        • et al.
        A novel insertion element from Mycobacterium avium, IS1245, is a specific target for analysis of strain relatedness.
        J Clin Microbiol. 1995; 33: 304-307
        • Selander R.K.
        • Caugant D.A.
        • Ochman H.
        • et al.
        Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics.
        Appl Environ Microbiol. 1986; 51: 873-884
        • Mazurek G.H.
        • Hartman S.
        • Zhang Y.
        • et al.
        Large DNA restriction fragment polymorphism in the Mycobacterium avium-M. intracellulare complex: a potential epidemiologic tool.
        J Clin Microbiol. 1993; 31: 390-394
        • Welsh J.
        • McClelland M.
        Fingerprinting genomes using PCR with arbitrary primers.
        Nucleic Acids Res. 1990; 18: 7213-7218
        • Yakrus M.A.
        • Hernandez S.M.
        • Floyd M.M.
        • et al.
        Comparison of methods for identification of Mycobacterium abscessus and M. chelonae isolates.
        J Clin Microbiol. 2001; 39: 4103-4110