Advertisement
Review article| Volume 23, ISSUE 4, P823-841, December 2003

Molecular detection of resistance to antituberculous therapy

      Tuberculosis (TB) is caused by Mycobacterium tuberculosis and is the second most common cause of death from a single infectious disease in the world [
      • Balter M.
      AIDS now world's fourth biggest killer.
      ], with an estimated eight million new cases each year and an annual, worldwide death toll of 2.9 million [
      • Kochi A.
      The global tuberculosis situation and the new control strategy of the World Health Organization.
      ]. The disease may be localized, with affinity to the lungs, or disseminated, involving multiple organs. Modern chemotherapy, appropriately prescribed and administered, cures up to 98% of cases of previously untreated pulmonary TB when the disease is caused by drug-susceptible tubercle bacilli [
      • Fox W.
      Whither short-course chemotherapy?.
      ].
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Balter M.
        AIDS now world's fourth biggest killer.
        Science. 1999; 284: 1101
        • Kochi A.
        The global tuberculosis situation and the new control strategy of the World Health Organization.
        Tubercle. 1991; 72: 1-6
        • Fox W.
        Whither short-course chemotherapy?.
        Br J Dis Chest. 1981; 75: 331-357
        • Goble M.
        • Iseman M.D.
        • Madsen L.A.
        • Waite D.
        • Ackerson L.
        • Horsburgh Jr., C.R.
        Treatment of 171 patients with pulmonary tuberculosis resistant to isoniazid and rifampin.
        N Engl J Med. 1993; 328: 527-532
        • Frieden T.R.
        • Sterling T.
        • Pablos-Mendez A.
        • Kilburn J.O.
        • Cauthen G.M.
        • Dooley S.W.
        The emergence of drug-resistant tuberculosis in New York City.
        N Engl J Med. 1993; 328: 521-526
        • David H.L.
        Drug-resistance in M. tuberculosis and other mycobacteria.
        Clin Chest Med. 1980; 1: 227-230
        • Tsukamura M.
        The pattern of resistance development to rifampicin in Mycobacterium tuberculosis.
        Tubercle. 1972; 53: 111-117
        • Middlebrook G.
        Isoniazid-resistance and catalase activity of tubercle bacilli. A preliminary report.
        Am Rev Tuberc. 1954; 69: 471-472
        • Zhang Y.
        • Heym B.
        • Allen B.
        • Young D.
        • Cole S.
        The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis.
        Nature. 1992; 358: 591-593
        • Altamirano M.
        • Marostenmaki J.
        • Wong A.
        • FitzGerald M.
        • Black W.A.
        • Smith J.A.
        Mutations in the catalase-peroxidase gene from isoniazid-resistant Mycobacterium tuberculosis isolates.
        J Infect Dis. 1994; 169: 1162-1165
        • Ferrazoli L.
        • Palaci M.
        • Telles M.A.
        • Ueki S.Y.
        • Kritski A.
        • Marques L.R.
        • et al.
        Catalase expression, katG, and MIC of isoniazid for Mycobacterium tuberculosis isolates from Sao Paulo, Brazil.
        J Infect Dis. 1995; 171: 237-240
        • Haas W.H.
        • Schilke K.
        • Brand J.
        • Amthor B.
        • Weyer K.
        • Fourie P.B.
        • et al.
        Molecular analysis of katG gene mutations in strains of Mycobacterium tuberculosis complex from Africa.
        Antimicrob Agents Chemother. 1997; 41: 1601-1603
        • Heym B.
        • Alzari P.M.
        • Honore N.
        • Cole S.T.
        Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis.
        Mol Microbiol. 1995; 15: 235-245
        • Musser J.M.
        • Kapur V.
        • Williams D.L.
        • Kreiswirth B.N.
        • van Soolingen D.
        • van Embden J.D.
        Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance.
        J Infect Dis. 1996; 173: 196-202
        • Pretorius G.S.
        • van Helden P.D.
        • Sirgel F.
        • Eisenach K.D.
        • Victor T.C.
        Mutations in katG gene sequences in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis are rare.
        Antimicrob Agents Chemother. 1995; 39: 2276-2281
        • Stoeckle M.Y.
        • Guan L.
        • Riegler N.
        • Weitzman I.
        • Kreiswirth B.
        • Kornblum J.
        • et al.
        Catalase-peroxidase gene sequences in isoniazid-sensitive and -resistant strains of Mycobacterium tuberculosis from New York City.
        J Infect Dis. 1993; 168: 1063-1065
        • Banerjee A.
        • Dubnau E.
        • Quemard A.
        • Balasubramanian V.
        • Um K.S.
        • Wilson T.
        • et al.
        inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis.
        Science. 1994; 263: 227-230
        • Heym B.
        • Honore N.
        • Truffot-Pernot C.
        • Banerjee A.
        • Schurra C.
        • Jacobs Jr., W.R.
        • et al.
        Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study.
        Lancet. 1994; 344: 293-298
        • Cockerill 3rd, F.R.
        • Uhl J.R.
        • Temesgen Z.
        • Zhang Y.
        • Stockman L.
        • Roberts G.D.
        • et al.
        Rapid identification of a point mutation of the Mycobacterium tuberculosis catalase-peroxidase (katG) gene associated with isoniazid resistance.
        J Infect Dis. 1995; 171: 240-245
        • Kapur V.
        • Li L.L.
        • Hamrick M.R.
        • Plikaytis B.B.
        • Shinnick T.M.
        • Telenti A.
        • et al.
        Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing.
        Arch Pathol Lab Med. 1995; 119: 131-138
        • Rouse D.A.
        • Li Z.
        • Bai G.H.
        • Morris S.L.
        Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis.
        Antimicrob Agents Chemother. 1995; 39: 2472-2477
        • Telenti A.
        • Honore N.
        • Bernasconi C.
        • March J.
        • Ortega A.
        • Heym B.
        • et al.
        Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level.
        J Clin Microbiol. 1997; 35: 719-723
        • Sherman D.R.
        • Mdluli K.
        • Hickey M.J.
        • Arain T.M.
        • Morris S.L.
        • Barry 3rd, C.E.
        • et al.
        Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis.
        Science. 1996; 272: 1641-1643
        • Wengenack N.L.
        • Uhl J.R.
        • St. Amand A.L.
        • Tomlinson A.J.
        • Benson L.M.
        • Naylor S.
        • et al.
        Recombinant Mycobacterium tuberculosis KatG(S315T) is a competent catalase-peroxidase with reduced activity toward isoniazid.
        J Infect Dis. 1997; 176: 722-727
        • Mdluli K.
        • Slayden R.A.
        • Zhu Y.
        • Ramaswamy S.
        • Pan X.
        • Mead D.
        • et al.
        Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid.
        Science. 1998; 280: 1607-1610
        • Telenti A.
        • Imboden P.
        • Marchesi F.
        • Lowrie D.
        • Cole S.
        • Colston M.J.
        • et al.
        Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis.
        Lancet. 1993; 341: 647-650
        • Telenti A.
        • Imboden P.
        • Marchesi F.
        • Schmidheini T.
        • Bodmer T.
        Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis.
        Antimicrob Agents Chemother. 1993; 37: 2054-2058
        • Kapur V.
        • Li L.L.
        • Iordanescu S.
        • Hamrick M.R.
        • Wanger A.
        • Kreiswirth B.N.
        • et al.
        Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas.
        J Clin Microbiol. 1994; 32: 1095-1098
        • Miller L.P.
        • Crawford J.T.
        • Shinnick T.M.
        The rpoB gene of Mycobacterium tuberculosis.
        Antimicrob Agents Chemother. 1994; 38: 805-811
        • Williams D.L.
        • Waguespack C.
        • Eisenach K.
        • Crawford J.T.
        • Portaels F.
        • Salfinger M.
        • et al.
        Characterization of rifampin-resistance in pathogenic mycobacteria.
        Antimicrob Agents Chemother. 1994; 38: 2380-2386
        • Felmlee T.A.
        • Liu Q.
        • Whelen A.C.
        • Williams D.
        • Sommer S.S.
        • Persing D.H.
        Genotypic detection of Mycobacterium tuberculosis rifampin resistance: comparison of single-strand conformation polymorphism and dideoxy fingerprinting.
        J Clin Microbiol. 1995; 33: 1617-1623
        • Morris S.
        • Bai G.H.
        • Suffys P.
        • Portillo-Gomez L.
        • Fairchok M.
        • Rouse D.
        Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis.
        J Infect Dis. 1995; 171: 954-960
        • Pretorius G.S.
        • Sirgel F.A.
        • Schaaf H.S.
        • van Helden P.D.
        • Victor T.C.
        Rifampicin resistance in Mycobacterium tuberculosis—rapid detection and implications in chemotherapy.
        S Afr Med J. 1996; 86: 50-55
        • Kim B.J.
        • Kim S.Y.
        • Park B.H.
        • Lyu M.A.
        • Park I.K.
        • Bai G.H.
        • et al.
        Mutations in the rpoB gene of Mycobacterium tuberculosis that interfere with PCR-single-strand conformation polymorphism analysis for rifampin susceptibility testing.
        J Clin Microbiol. 1997; 35: 492-494
        • Gingeras T.R.
        • Ghandour G.
        • Wang E.
        • Berno A.
        • Small P.M.
        • Drobniewski F.
        • et al.
        Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays.
        Genome Res. 1998; 8: 435-448
        • Liu Y.C.
        • Huang T.S.
        • Huang W.K.
        • Chen C.S.
        • Tu H.Z.
        Dideoxy fingerprinting for rapid screening of rpoB gene mutations in clinical isolates of Mycobacterium tuberculosis.
        J Formos Med Assoc. 1998; 97: 400-404
        • Konno K.
        • Feldmann F.M.
        • McDermott W.
        Pyrazinamide susceptibility and amidase activity of tubercle bacilli.
        Am Rev Respir Dis. 1967; 95: 461-469
        • Scorpio A.
        • Zhang Y.
        Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus.
        Nat Med. 1996; 2: 662-667
        • Scorpio A.
        • Lindholm-Levy P.
        • Heifets L.
        • Gilman R.
        • Siddiqi S.
        • Cynamon M.
        • et al.
        Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis.
        Antimicrob Agents Chemother. 1997; 41: 540-543
        • Sreevatsan S.
        • Pan X.
        • Zhang Y.
        • Kreiswirth B.N.
        • Musser J.M.
        Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms.
        Antimicrob Agents Chemother. 1997; 41: 636-640
        • Hirano K.
        • Takahashi M.
        • Kazumi Y.
        • Fukasawa Y.
        • Abe C.
        Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis.
        Tuber Lung Dis. 1997; 78: 117-122
        • Marttila H.J.
        • Marjamaki M.
        • Vyshnevskaya E.
        • Vyshnevskiy B.I.
        • Otten T.F.
        • Vasilyef A.V.
        • et al.
        pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates from northwestern Russia.
        Antimicrob Agents Chemother. 1999; 43: 1764-1766
        • Telenti A.
        • Philipp W.J.
        • Sreevatsan S.
        • Bernasconi C.
        • Stockbauer K.E.
        • Wieles B.
        • et al.
        The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol.
        Nat Med. 1997; 3: 567-570
        • Lety M.A.
        • Nair S.
        • Berche P.
        • Escuyer V.
        A single point mutation in the embB gene is responsible for resistance to ethambutol in Mycobacterium smegmatis.
        Antimicrob Agents Chemother. 1997; 41: 2629-2633
        • Sreevatsan S.
        • Stockbauer K.E.
        • Pan X.
        • Kreiswirth B.N.
        • Moghazeh S.L.
        • Jacobs Jr., W.R.
        • et al.
        Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations.
        Antimicrob Agents Chemother. 1997; 41: 1677-1681
        • Douglass J.
        • Steyn L.M.
        A ribosomal gene mutation in streptomycin-resistant Mycobacterium tuberculosis isolates.
        J Infect Dis. 1993; 167: 1505-1506
        • Davies J.
        • Wright G.D.
        Bacterial resistance to aminoglycoside antibiotics.
        Trends Microbiol. 1997; 5: 234-240
        • Rattan A.
        • Kalia A.
        • Ahmad N.
        Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives.
        Emerg Infect Dis. 1998; 4: 195-209
        • Finken M.
        • Kirschner P.
        • Meier A.
        • Wrede A.
        • Bottger E.C.
        Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot.
        Mol Microbiol. 1993; 9: 1239-1246
        • Nair J.
        • Rouse D.A.
        • Bai G.H.
        • Morris S.L.
        The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis.
        Mol Microbiol. 1993; 10: 521-527
        • Cooksey R.C.
        • Morlock G.P.
        • McQueen A.
        • Glickman S.E.
        • Crawford J.T.
        Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City.
        Antimicrob Agents Chemother. 1996; 40: 1186-1188
        • Sreevatsan S.
        • Pan X.
        • Stockbauer K.E.
        • Williams D.L.
        • Kreiswirth B.N.
        • Musser J.M.
        Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities.
        Antimicrob Agents Chemother. 1996; 40: 1024-1026
        • Dobner P.
        • Bretzel G.
        • Rusch-Gerdes S.
        • Feldmann K.
        • Rifai M.
        • Loscher T.
        • et al.
        Geographic variation of the predictive values of genomic mutations associated with streptomycin resistance in Mycobacterium tuberculosis.
        Mol Cell Probes. 1997; 11: 123-126
        • Sander P.
        • Meier A.
        • Bottger E.C.
        Ribosomal drug resistance in mycobacteria.
        Res Microbiol. 1996; 147: 59-67
        • Watterson S.A.
        • Wilson S.M.
        • Yates M.D.
        • Drobniewski F.A.
        Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis.
        J Clin Microbiol. 1998; 36: 1969-1973
        • Sanger F.
        • Nicklen S.
        • Coulson A.R.
        DNA sequencing with chain-terminating inhibitors.
        Proc Natl Acad Sci U S A. 1977; 74: 5463-5467
        • Dobner P.
        • Rusch-Gerdes S.
        • Bretzel G.
        • Feldmann K.
        • Rifai M.
        • Loscher T.
        • et al.
        Usefulness of Mycobacterium tuberculosis genomic mutations in the genes katG and inhA for the prediction of isoniazid resistance.
        Int J Tuberc Lung Dis. 1997; 1: 365-369
        • Orita M.
        • Iwahana H.
        • Kanazawa H.
        • Hayashi K.
        • Sekiya T.
        Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms.
        Proc Natl Acad Sci U S A. 1989; 86: 2766-2770
        • Temesgen Z.
        • Satoh K.
        • Uhl J.R.
        • Kline B.C.
        • Cockerill 3rd, F.R.
        Use of polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) analysis to detect a point mutation in the catalase-peroxidase gene (katG) of Mycobacterium tuberculosis.
        Mol Cell Probes. 1997; 11: 59-63
        • Whelen A.C.
        • Felmlee T.A.
        • Hunt J.M.
        • Williams D.L.
        • Roberts G.D.
        • Stockman L.
        • et al.
        Direct genotypic detection of Mycobacterium tuberculosis rifampin resistance in clinical specimens by using single-tube heminested PCR.
        J Clin Microbiol. 1995; 33: 556-561
        • Scarpellini P.
        • Braglia S.
        • Brambilla A.M.
        • Dalessandro M.
        • Cichero P.
        • Gori A.
        • et al.
        Detection of rifampin resistance by single-strand conformation polymorphism analysis of cerebrospinal fluid of patients with tuberculosis of the central nervous system.
        J Clin Microbiol. 1997; 35: 2802-2806
        • Kim B.J.
        • Lee K.H.
        • Park B.N.
        • Kim S.J.
        • Park E.M.
        • Park Y.G.
        • et al.
        Detection of rifampin-resistant Mycobacterium tuberculosis in sputa by nested PCR-linked single-strand conformation polymorphism and DNA sequencing.
        J Clin Microbiol. 2001; 39: 2610-2617
        • Williams D.L.
        • Spring L.
        • Gillis T.P.
        • Salfinger M.
        • Persing D.H.
        Evaluation of a polymerase chain reaction-based universal heteroduplex generator assay for direct detection of rifampin susceptibility of Mycobacterium tuberculosis from sputum specimens.
        Clin Infect Dis. 1998; 26: 446-450
        • Thomas G.A.
        • Williams D.L.
        • Soper S.A.
        Capillary electrophoresis-based heteroduplex analysis with a universal heteroduplex generator for detection of point mutations associated with rifampin resistance in tuberculosis.
        Clin Chem. 2001; 47: 1195-1203
        • Nash K.A.
        • Gaytan A.
        • Inderlied C.B.
        Detection of rifampin resistance in Mycobacterium tuberculosis by use of a rapid, simple, and specific RNA/RNA mismatch assay.
        J Infect Dis. 1997; 176: 533-536
        • Lyamichev V.
        • Mast A.L.
        • Hall J.G.
        • Prudent J.R.
        • Kaiser M.W.
        • Takova T.
        • et al.
        Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes.
        Nat Biotechnol. 1999; 17: 292-296
        • Cooksey R.C.
        • Holloway B.P.
        • Oldenburg M.C.
        • Listenbee S.
        • Miller C.W.
        Evaluation of the invader assay, a linear signal amplification method, for identification of mutations associated with resistance to rifampin and isoniazid in Mycobacterium tuberculosis.
        Antimicrob Agents Chemother. 2000; 44: 1296-1301
        • Saiki R.K.
        • Walsh P.S.
        • Levenson C.H.
        • Erlich H.A.
        Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes.
        Proc Natl Acad Sci U S A. 1989; 86: 6230-6234
        • De Beenhouwer H.
        • Lhiang Z.
        • Jannes G.
        • Mijs W.
        • Machtelinckx L.
        • Rossau R.
        • et al.
        Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay.
        Tuber Lung Dis. 1995; 76: 425-430
        • Rossau R.
        • Traore H.
        • De Beenhouwer H.
        • Mijs W.
        • Jannes G.
        • De Rijk P.
        • et al.
        Evaluation of the INNO-LiPA Rif.TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin.
        Antimicrob Agents Chemother. 1997; 41: 2093-2098
        • Matsiota-Bernard P.
        • Vrioni G.
        • Marinis E.
        Characterization of rpoB mutations in rifampin-resistant clinical Mycobacterium tuberculosis isolates from Greece.
        J Clin Microbiol. 1998; 36: 20-23
        • Marttila H.J.
        • Soini H.
        • Vyshnevskiy B.I.
        • Otten T.F.
        • Vasilyef A.V.
        • Huovinen P.
        • et al.
        Rapid detection of rifampin-resistant Mycobacterium tuberculosis by sequencing and line probe assay.
        Scand J Infect Dis. 1998; 30: 129-132
        • Bartfai Z.
        • Somoskovi A.
        • Kodmon C.
        • Szabo N.
        • Puskas E.
        • Kosztolanyi L.
        • et al.
        Molecular characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Hungary by DNA sequencing and the line probe assay.
        J Clin Microbiol. 2001; 39: 3736-3739
        • Victor T.C.
        • Jordaan A.M.
        • van Rie A.
        • van der Spuy G.D.
        • Richardson M.
        • van Helden P.D.
        • et al.
        Detection of mutations in drug resistance genes of Mycobacterium tuberculosis by a dot-blot hybridization strategy.
        Tuber Lung Dis. 1999; 79: 343-348
        • Van Rie A.
        • Warren R.
        • Mshanga I.
        • Jordaan A.M.
        • van der Spuy G.D.
        • Richardson M.
        • et al.
        Analysis for a limited number of gene codons can predict drug resistance of Mycobacterium tuberculosis in a high-incidence community.
        J Clin Microbiol. 2001; 39: 636-641
        • Torres M.J.
        • Criado A.
        • Palomares J.C.
        • Aznar J.
        Use of real-time PCR and fluorimetry for rapid detection of rifampin and isoniazid resistance-associated mutations in Mycobacterium tuberculosis.
        J Clin Microbiol. 2000; 38: 3194-3199
        • Edwards K.J.
        • Metherell L.A.
        • Yates M.
        • Saunders N.A.
        Detection of rpoB mutations in Mycobacterium tuberculosis by biprobe analysis.
        J Clin Microbiol. 2001; 39: 3350-3352
        • Garcia de Viedma D.
        • del Sol Diaz Infantes M.
        • Lasala F.
        • Chaves F.
        • Alcala L.
        • Bouza E.
        New real-time PCR able to detect in a single tube multiple rifampin resistance mutations and high-level isoniazid resistance mutations in Mycobacterium tuberculosis.
        J Clin Microbiol. 2002; 40: 988-995
        • Wittwer C.T.
        • Herrmann M.G.
        • Moss A.A.
        • Rasmussen R.P.
        Continuous fluorescence monitoring of rapid cycle DNA amplification.
        Biotechniques. 1997; 22: 130-139
        • Wittwer C.T.
        • Ririe K.M.
        • Andrew R.V.
        • David D.A.
        • Gundry R.A.
        • Balis U.J.
        The LightCycler: a microvolume multisample fluorimeter with rapid temperature control.
        Biotechniques. 1997; 22: 176-181
        • Fodor S.P.
        • Rava R.P.
        • Huang X.C.
        • Pease A.C.
        • Holmes C.P.
        • Adams C.L.
        Multiplexed biochemical assays with biological chips.
        Nature. 1993; 364: 555-556
        • Troesch A.
        • Nguyen H.
        • Miyada C.G.
        • Desvarenne S.
        • Gingeras T.R.
        • Kaplan P.M.
        • et al.
        Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays.
        J Clin Microbiol. 1999; 37: 49-55
        • Mikhailovich V.
        • Lapa S.
        • Gryadunov D.
        • Sobolev A.
        • Strizhkov B.
        • Chernyh N.
        • et al.
        Identification of rifampin-resistant Mycobacterium tuberculosis strains by hybridization, PCR, and ligase detection reaction on oligonucleotide microchips.
        J Clin Microbiol. 2001; 39: 2531-2540
        • Yershov G.
        • Barsky V.
        • Belgovskiy A.
        • Kirillov E.
        • Kreindlin E.
        • Ivanov I.
        • et al.
        DNA analysis and diagnostics on oligonucleotide microchips.
        Proc Natl Acad Sci U S A. 1996; 93: 4913-4918
        • Strizhkov B.N.
        • Drobyshev A.L.
        • Mikhailovich V.M.
        • Mirzabekov A.D.
        PCR amplification on a microarray of gel-immobilized oligonucleotides: detection of bacterial toxin- and drug-resistant genes and their mutations.
        Biotechniques. 2000; 29: 844-857
        • Head S.R.
        • Parikh K.
        • Rogers Y.H.
        • Bishai W.
        • Goelet P.
        • Boyce-Jacino M.T.
        Solid-phase sequence scanning for drug resistance detection in tuberculosis.
        Mol Cell Probes. 1999; 13: 81-87
        • Rouse D.A.
        • DeVito J.A.
        • Li Z.
        • Byer H.
        • Morris S.L.
        Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance.
        Mol Microbiol. 1996; 22: 583-592
        • Miyazaki Y.
        • Koga H.
        • Kohno S.
        • Kaku M.
        Nested polymerase chain reaction for detection of Mycobacterium tuberculosis in clinical samples.
        J Clin Microbiol. 1993; 31: 2228-2232
        • Hunt J.M.
        • Roberts G.D.
        • Stockman L.
        • Felmlee T.A.
        • Persing D.H.
        Detection of a genetic locus encoding resistance to rifampin in mycobacterial cultures and in clinical specimens.
        Diagn Microbiol Infect Dis. 1994; 18: 219-227
        • Noordhoek G.T.
        • van Embden J.D.
        • Kolk A.H.
        Reliability of nucleic acid amplification for detection of Mycobacterium tuberculosis: an international collaborative quality control study among 30 laboratories.
        J Clin Microbiol. 1996; 34: 2522-2525