Advertisement
Review article| Volume 22, ISSUE 3, P611-635, September 2002

HIV-1 replication cycle

      Acquired immunodeficiency disease is caused by HIV. HIV types 1 and 2 are members of the Lentivirus genus of the Retroviridae family. HIV-1 is found throughout the world, whereas HIV-2 is still found predominately in West Africa. Although these viruses have replication processes characteristic of the Retroviridae family, marked by single-stranded RNA genome, and replication through reverse transcription and integration, HIV is a new pathogen that seems to have emerged in the twentieth century, likely from cross-species infection from chimpanzees in Africa [
      • Hahn B.H.
      • Shaw G.M.
      • De Cock K.M.
      • Sharp P.M.
      AIDS as a zoonosis: scientific and public health implications.
      ,
      • Korber B.
      • Gaschen B.
      • Yusim K.
      • Thakallapally R.
      • Kesmir C.
      • Detours V.
      Evolutionary and immunological implications of contemporary HIV-1 variation.
      ]. In contrast to other retroviruses, however, HIV has evolved a variety of accessory genes that can modulate HIV replication. Some of these genes seem to confer abilities to establish persistent infection and to control exuberant replication that may more rapidly cause disease and death in the host.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hahn B.H.
        • Shaw G.M.
        • De Cock K.M.
        • Sharp P.M.
        AIDS as a zoonosis: scientific and public health implications.
        Science. 2000; 287: 607-614
        • Korber B.
        • Gaschen B.
        • Yusim K.
        • Thakallapally R.
        • Kesmir C.
        • Detours V.
        Evolutionary and immunological implications of contemporary HIV-1 variation.
        Br Med Bull. 2001; 58: 19-42
        • Gottlieb M.S.
        • Schroff R.
        • Schanker H.M.
        • et al.
        Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency.
        N Engl J Med. 1981; 305: 1425-1431
        • Masur H.
        • Michelis M.A.
        • Greene J.B.
        • et al.
        An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction.
        N Engl J Med. 1981; 305: 1431-1438
        • Popovic M.
        • Sarin P.S.
        • Robert-Gurroff M.
        • et al.
        Isolation and transmission of human retrovirus (human t-cell leukemia virus).
        Science. 1983; 219: 856-859
        • Barre-Sinoussi F.
        • Chermann J.C.
        • Rey F.
        • et al.
        Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immunodeficiency virus (AIDS).
        Science. 1983; 220: 868
        • Wang W.K.
        • Chen M.Y.
        • Chuang C.Y.
        • Jeang K.T.
        • Huang L.M.
        Molecular biology of human immunodeficiency virus type 1.
        J Microbiol Immunol Infect. 2000; 33: 131-140
        • Varmus H.
        Retroviruses.
        Science. 1988; 240: 1427-1435
        • Wang W.K.
        • Chen M.Y.
        • Chuang C.Y.
        • Jeang K.T.
        • Huang L.M.
        Molecular biology of human immunodeficiency virus type 1.
        J Microbiol Immunol Infect. 2000; 33: 131-140
        • Gelderblom H.R.
        Assembly and morphology of HIV: potential effect of structure on viral function.
        AIDS. 1991; 5: 617-637
        • Facke M.
        • Janetzko A.
        • Shoeman R.L.
        • Krausslich H.G.
        A large deletion in the matrix domain of the human immunodeficiency virus gag gene redirects virus particle assembly from the plasma membrane to the endoplasmic reticulum.
        J Virol. 1993; 67: 4972-4980
        • Bukrinsky M.I.
        • Haggerty S.
        • Dempsey M.P.
        • et al.
        A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells.
        Nature. 1993; 365: 666-669
        • Gottlinger H.G.
        • Sodroski J.G.
        • Haseltine W.A.
        Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1.
        Proc Natl Acad Sci USA. 1989; 86: 5781-5785
        • Bryant M.
        • Ratner L.
        Myristoylation-dependent replication and assembly of human immunodeficiency virus 1.
        Proc Natl Acad Sci USA. 1990; 87: 523-527
        • Luban J.
        • Goff S.P.
        Binding of human immunodeficiency virus type 1 (HIV-1) RNA to recombinant HIV-1 gag polyprotein.
        J Virol. 1991; 65: 3203-3212
        • Gorelick R.J.
        • Nigida Jr., S.M.
        • Bess Jr., J.W.
        • Arthur L.O.
        • Henderson L.E.
        • Rein A.
        Noninfectious human immunodeficiency virus type 1 mutants deficient in genomic RNA.
        J Virol. 1990; 64: 3207-3211
        • Aldovini A.
        • Young R.A.
        Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus.
        J Virol. 1990; 64: 1920-1926
        • Wills J.W.
        • Craven R.C.
        Form, function, and use of retroviral gag proteins.
        AIDS. 1991; 5: 639-654
        • von Poblotzki A.
        • Wagner R.
        • Niedrig M.
        • Wanner G.
        • Wolf H.
        • Modrow S.
        Identification of a region in the Pr55gag-polyprotein essential for HIV-1 particle formation.
        Virology. 1993; 193: 981-985
        • Franke E.K.
        • Yuan H.E.
        • Luban J.
        Specific incorporation of cyclophilin A into HIV-1 virions.
        Nature. 1994; 372: 359-362
        • Gorelick R.J.
        • Henderson L.E.
        • Hanser J.P.
        • Rein A.
        Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a “zinc finger- like” protein sequence.
        Proc Natl Acad Sci USA. 1988; 85: 8420-8424
        • Stevenson M.
        • Bukrinsky M.
        • Haggerty S.
        HIV-1 replication and potential targets for intervention.
        AIDS Res Hum Retroviruses. 1992; 8: 107-117
        • Goff S.P.
        Retroviral reverse transcriptase: synthesis, structure, and function.
        J Acquir Immune Defic Syndr Hum Retrovirol. 1990; 3: 817-831
        • Goff S.P.
        Genetics of retroviral integration.
        Annu Rev Genet. 1992; 26: 527-544
        • Vink C.
        • Plasterk R.H.
        The human immunodeficiency virus integrase protein.
        Trends Genet. 1993; 9: 433-438
        • Moore J.P.
        • McKeating J.A.
        • Weiss R.A.
        • Sattentau Q.J.
        Soluble CD4 binding to virions disrupts the association between the surface and transmembrane glycoproteins of HIV-1.
        Science. 1990; 250: 1139-1142
        • Feinberg M.B.
        • Jarrett R.F.
        • Aldovini A.
        • Gallo R.C.
        • Wong S.F.
        HTLV-III expression and production involved complex regulation at the levels of splicing and translation of viral DNA.
        Cell. 1986; 46: 807-817
        • Sodroski J.
        • Goh W.C.
        • Rosen C.
        • et al.
        Replicative and cytopathic potential of HTLV-III/LAV with sor gene deletions.
        Science. 1986; 231: 1549-1553
        • Jonckheere H.
        • Anne J.
        • De Clercq E.
        The HIV-1 reverse transcription (RT) process as target for RT inhibitors.
        Med Res Rev. 2000; 20: 129-154
        • Heinzinger N.K.
        • Bukrinsky M.I.
        • Haggerty S.A.
        • et al.
        The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells.
        Proc Natl Acad Sci USA. 1994; 91: 7311-7315
        • Bushman F.D.
        • Miller M.D.
        Tethering human immunodeficiency virus type 1 preintegration complexes.
        J Virol. 1997; 71: 458-464
        • McGrath K.M.
        • Hoffman N.G.
        • Resch W.
        • Nelson J.A.
        • Swanstrom R.
        Using HIV-1 sequence variability to explore virus biology.
        Virus Res. 2001; 76: 137-160
        • Bobenek K.
        • Kunkel T.A.
        The fidelity of retroviral reverse transcriptases.
        in: Anonymous Reverse transcriptase. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)1993: 85-102
        • Temin H.M.
        Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation.
        Proc Natl Acad Sci USA. 1993; 90: 6900-6903
        • Coffin J.M.
        HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy.
        Science. 1995; 267: 483-489
        • Hu S.L.
        • Travis B.M.
        • Garrigues J.
        • et al.
        Processing, assembly, and immunogenicity of human immunodeficiency virus core antigens expressed by recombinant vaccinia virus.
        Virology. 1990; 179: 321-329
        • Zhang H.
        • Dornadula G.
        • Orenstein J.
        • Pomerantz R.J.
        Morphologic changes in human immunodeficiency virus type 1 virions secondary to intravirion reverse transcription: evidence indicating that reverse transcription may not take place within the intact viral core.
        J Hum Virol. 2000; 3: 165-172
        • McCutchan F.E.
        Understanding the genetic diversity of HIV-1.
        AIDS. 2000; 14: S31-S44
        • Modrow S.
        • Hahn B.H.
        • Shaw G.M.
        • Gallo R.C.
        • Wong-Staal F.
        • Wolf H.
        Computer-assisted analysis of envelope protein sequences of seven human immunodeficiency virus isolates: prediction of antigenic epitopes in conserved and variable regions.
        J Virol. 1987; 61: 570-578
        • Myers G.
        • Korber B.
        • Wain-Hobson S.
        • Smith R.F.
        • Paulakis G.N.
        Human retroviruses and AIDS 1993. A compilation and analysis of nucleic acid and amino acid sequences. Los Alamos National Laboratory, Los Alamos (NM)1993
        • O'Brien W.A.
        • Koyanagi Y.
        • Namazie A.
        • et al.
        HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain.
        Nature. 1990; 348: 69-73
        • Rusche J.R.
        • Javaherian K.
        • McDanal C.
        • et al.
        Antibodies that inhibit fusion of human immunodeficiency virus- infected cells and a 24-amino acid sequence of the viral envelope, gp120.
        Proc Natl Acad Sci USA. 1988; 84: 6924-6928
        • Javaherian K.
        • Langlois A.J.
        • McDanal C.
        • et al.
        Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein.
        Proc Natl Acad Sci USA. 1989; 86: 6768-6772
        • Shin C-G
        • Taddeo B.
        • Haseltine W.A.
        • Farnet C.M.
        Genetic analysis of the human immunodeficiency virus type 1 integrase protein.
        J Virol. 1994; 68: 1633-1642
        • Reicin A.S.
        • Kalpana G.
        • Paik S.
        • Marmon S.
        • Goff S.
        Sequences in the human immunodeficiency virus type 1 U3 region required for in vivo and in vitro integration.
        J Virol. 1997; 69: 5904-5907
        • Masuda T.
        • Planelles V.
        • Krogstad P.
        • Chen I.S.Y.
        Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att Site: unusual phenotype of mutants in the zinc finger-like domain.
        J Virol. 1995; 69: 6687-6696
        • Cullen B.R.
        Journey to the center of the cell.
        Cell. 2001; 105: 697-700
        • Jeeninga R.E.
        • Hoogenkamp M.
        • Armand-Ugon M.
        • de Baar M.
        • Verhoef K.
        • Berkhout B.
        Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes A through G.
        J Virol. 2000; 74: 3740-3751
        • Vogt V.M.
        Ubiquitin in retrovirus assembly: actor or bystander?.
        Proc Natl Acad Sci USA. 2000; 97: 12945-12947
        • Arya S.K.
        • Guo C.
        • Josephs S.F.
        • Wong-Staal F.
        Trans-activator gene of human T-lymphotropic virus type III (HTLV-III).
        Science. 1985; 229: 69-73
        • Rosen C.A.
        • Sodroski J.G.
        • Haseltine W.A.
        The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat.
        Cell. 1985; 41: 813-823
        • Feng S.
        • Holland E.C.
        HIV-1 tat trans-activation requires the loop sequence within tar.
        Nature. 1988; 334: 165-167
        • Gatignol A.
        • Buckler-White A.
        • Berkhout B.
        • Jeang K.-T.
        Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR.
        Science. 1991; 251: 1597-1600
        • Daly T.J.
        • Cook K.S.
        • Gray G.S.
        • Malone T.E.
        • Rusche J.R.
        Specific binding of HIV-1 recombinant Rev protein to the Rev- responsive element in vitro.
        Nature. 1989; 342: 816-819
        • Malim M.H.
        • Hauber J.
        • Fenrick R.
        • Cullen B.R.
        Immunodeficiency virus rev trans-activator modulates the expression of the viral regulatory genes.
        Nature. 1988; 335: 181-183
        • Zapp M.L.
        • Green M.R.
        Sequence specific RNA binding by the HIV-1 Rev protein.
        Nature. 1989; 342: 714-717
        • Malim M.H.
        • Hauber J.
        • Le S.-Y.
        • Maizel J.V.
        • Cullen B.R.
        The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA.
        Nature. 1989; 338: 254-257
        • Greenway A.L.
        • Holloway G.
        • McPhee D.A.
        HIV-1 Nef: a critical factor in viral-induced pathogenesis.
        Adv Pharmacol. 2000; 48: 299-343
        • Hanna Z.
        • Kay D.G.
        • Rebai N.
        • Guimond A.
        • Jothy S.
        • Jolicoeur P.
        Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice.
        Cell. 1998; 95: 163-175
        • Luciw P.A.
        • Cheng-Mayer C.
        • Levy J.A.
        Mutational analysis of the human immunodeficiency virus: the orf-B region down-regulates virus replication.
        Proc Natl Acad Sci USA. 1987; 84: 1434-1438
        • Cheng-Mayer C.
        • Seto D.
        • Tateno M.
        • Levy J.A.
        Biologic features of HIV-1 that correlate with virulence in the host.
        Science. 1988; 240: 80-82
        • Jamieson B.D.
        • Aldrovandi G.M.
        • Planelles V.
        • et al.
        Requirement of human immunodeficiency virus type 1 nef for in vivo replication and pathogenicity.
        J Virol. 1994; 68: 3478-3485
        • Kestler H.W.
        • Ringler D.J.
        • Mori K.
        • et al.
        Importance of the nef gene for maintenance of high virus loads and for development of AIDS.
        Cell. 1991; 65: 651-662
        • Kirchhoff F.
        • Greenough T.C.
        • Brettler D.B.
        • Sullivan J.L.
        • Desrosiers R.C.
        Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection.
        N Engl J Med. 1995; 332: 228-232
        • Deacon N.J.
        • Tsykin A.
        • Solomon A.
        • et al.
        Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients.
        Science. 1995; 270: 988-991
        • Marsh J.W.
        The numerous effector functions of Nef.
        Arch Biochem Biophys. 1999; 365: 192-198
        • Piguet V.
        • Gu F.
        • Foti M.
        • et al.
        Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes.
        Cell. 1999; 97: 63-73
        • Yang O.O.
        • Nguyen P.T.
        • Kalams S.A.
        • et al.
        Nef-mediated resistance of human immunodeficiency virus type 1 to antiviral cytotoxic T lymphocytes.
        J Virol. 2002; 76: 1626-1631
        • Geleziunas R.
        • Xu W.
        • Takeda K.
        • Ichijo H.
        • Greene W.C.
        HIV-1 Nef inhibits ASK1-dependent death signaling providing a potential mechanism for protecting the infected host cell.
        Nature. 2001; 410: 834-838
        • Wolf D.
        • Witte V.
        • Laffert B.
        • et al.
        HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad- phosphorylation to induce anti-apoptotic signals.
        Nat Med. 2001; 7: 1217-1224
        • von Schwedler U.
        • Song J.
        • Aiken C.
        • Trono D.
        Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells.
        J Virol. 1993; 67: 4945-4955
        • Gabuzda D.H.
        • Lawrence K.
        • Langhoff E.
        • et al.
        Role of Vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes.
        J Virol. 1992; 66: 6489-6495
        • Sakai H.
        • Kawamura M.
        • Sakaguri J.
        • et al.
        Integration is essential for efficient gene expression of human immunodeficiency virus type 1.
        J Virol. 1993; 67: 1169-1174
        • Fisher A.G.
        • Ensoli B.
        • Ivanoff L.
        • et al.
        The sor gene of HIV-1 is required for efficient virus transmission in vitro.
        Science. 1987; 237: 888-893
        • Khan M.A.
        • Aberham C.
        • Kao S.
        • et al.
        Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA.
        J Virol. 2001; 75: 7252-7265
        • Dornadula G.
        • Yang S.
        • Pomerantz R.J.
        • Zhang H.
        Partial rescue of the Vif-negative phenotype of mutant human immunodeficiency virus type 1 strains from nonpermissive cells by intravirion reverse transcription.
        J Virol. 2000; 74: 2594-2602
        • Ohagen A.
        • Gabuzda D.
        Role of Vif in stability of the human immunodeficiency virus type 1 core.
        J Virol. 2000; 74: 11055-11066
        • Nascimbeni M.
        • Bouyac M.
        • Rey F.
        • Spire B.
        • Clavel F.
        The replicative impairment of Vif-mutants of human immunodeficiency virus type 1 correlates with an overall defect in viral DNA synthesis.
        J Gen Virol. 1998; 79: 1945-1950
        • Henzler T.
        • Harmache A.
        • Herrmann H.
        • et al.
        Fully functional, naturally occurring and C-terminally truncated variant human immunodeficiency virus (HIV) Vif does not bind to HIV Gag but influences intermediate filament structure.
        J Gen Virol. 2001; 82: 561-573
        • Karczewski M.K.
        • Strebel K.
        Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein.
        J Virol. 1996; 70: 494-507
        • Simm M.
        • Shahabuddin M.
        • Chao W.
        • Allan J.S.
        • Volsky D.J.
        Aberrant Gag protein composition of a human immunodeficiency virus type 1 vif mutant produced in primary lymphocytes.
        J Virol. 1995; 69: 4582-4586
        • Goncalves J.
        • Korin Y.
        • Zack J.
        • Gabuzda D.
        Role of Vif in human immunodeficiency virus type 1 reverse transcription.
        J Virol. 1996; 70: 8701-8709
        • Bukrinsky M.
        • Adzhubei A.
        Viral protein R of HIV-1.
        Rev Med Virol. 1999; 9: 39-49
        • De Noronha C.M.
        • Sherman M.P.
        • Lin H.W.
        • et al.
        Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr.
        Science. 2001; 294: 1105-1108
        • Hoch J.
        • Lang S.M.
        • Weeger M.
        • et al.
        Vpr deletion mutant of simian immunodeficiency virus induces AIDS in rhesus monkeys.
        J Virol. 1995; 69: 4807-4813
        • Lang S.M.
        • Weeger M.
        • Stahl-Hennig C.
        • et al.
        Importance of vpr for infection of rhesus monkeys with simian immunodeficiency virus.
        J Virol. 1993; 67: 902-912
        • Strebel K.
        • Daugherty D.
        • Clouse K.
        • Cohen D.
        • Folks T.
        • Martin M.A.
        The HIV ‘A’ (sor) gene product is essential for virus infectivity.
        Nature. 1987; 328: 728-731
        • Terwilliger E.F.
        • Cohen E.A.
        • Lu Y.
        • Sodroski J.G.
        • Haseltine W.A.
        Functional role of human immunodeficiency virus type 1 vpu.
        Proc Natl Acad Sci USA. 1989; 86: 5163-5167
        • Klimkait T.
        • Strebel K.
        • Hoggan M.D.
        • Martin M.A.
        • Orenstein J.M.
        The human immunodeficiency virus type-specific protein Vpu is required for efficient virus maturation and release.
        J Virol. 1990; 64: 621-629
        • Willey R.L.
        • Maldarelli F.
        • Martin M.A.
        • Strebel K.
        Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160–CD4 complexes.
        J Virol. 1992; 66: 226-234
        • Willey R.L.
        • Maldarelli F.
        • Martin M.A.
        • Strebel K.
        Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4.
        J Virol. 1992; 66: 7193-7200
        • Geraghty R.J.
        • Panganiban A.T.
        Human immunodeficiency virus type 1 Vpu has a CD4- and an envelope glycoprotein-independent function.
        J Virol. 1993; 67: 4190-4194
        • Strebel K.
        • Klimkait T.
        • Matin M.A.
        A novel gene of HIV-1, vpu, and its 16-kilodalton product.
        Science. 1988; 241: 1221-1223
        • Yao X.J.
        • Garzon S.
        • Boisvert F.
        • Haseltine W.A.
        • Cohen E.A.
        The effect of vpu on HIV-1 induced syncytia formation.
        J Acquir Immune Defic Syndr Hum Retrovirol. 1993; 6: 135-141
        • Yu X.-F.
        • Ito S.
        • Essex M.
        • Lee T.-H.
        A naturally immunogenic virion-associated protein specific for HIV-2 and SIV.
        Nature. 1988; 335: 262-265
        • Kappes J.C.
        • Conway J.A.
        • Lee S.-W.
        • Shaw G.M.
        • Hahn B.H.
        Human immunodeficiency virus type 2 Vpx protein augments viral infectivity.
        Virology. 1991; 184: 197-209
        • Marcon L.
        • Michaels F.
        • Hattori N.
        • Fargnoli K.
        • Gallo R.C.
        • Franchini G.
        Dispensable role of the human immunodeficiency virus type 2 Vpx protein in viral replication.
        J Virol. 1991; 65: 3938-3942
        • Yu X.-F.
        • Yu Q.-C.
        • Essex M.
        • Lee T.-H.
        The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophages.
        J Virol. 1991; 65: 5088-5091
        • Tristem M.
        • Marshall C.
        • Karpas A.
        • Petrik J.
        • Hill F.
        Origin of vpr in lentiviruses.
        Nature. 1990; 347: 341-342
        • Yu X.
        • Matsuda Z.
        • Yu Q.C.
        • Lee T.H.
        • Essex M.
        Vpx of simian immunodeficiency virus is localized primarily outside the virus core in mature virions.
        J Virol. 1993; 67: 4386-4390
        • Zack J.A.
        • Arrigo S.J.
        • Weitsman S.R.
        • Go A.S.
        • Haislip A.
        • Chen I.S.Y.
        HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure.
        Cell. 1990; 61: 213-222
        • Stevenson M.
        • Stanwick T.L.
        • Dempsey M.P.
        • Lamonica C.A.
        HIV-1 replication is controlled at the level of T cell activation and proviral integration.
        EMBO J. 1990; 9: 1551-1560
        • Folks T.
        • Powell D.M.
        • Ligbtfoote M.M.
        • Benn S.
        • Martin M.A.
        • Fauci A.S.
        Induction of HTLV-III/LAV from a nonvirus-producing T cell line: implications for latency.
        Science. 1986; 231: 600-602
        • Pomerantz R.J.
        • Trono D.
        • Feinberg M.B.
        • Baltimore D.
        Cells nonproductively infected with HV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency.
        Cell. 1990; 61: 1271-1276
        • Seshamma T.
        • Bagasra O.
        • Trono D.
        • Baltimore D.
        • Pomerantz R.J.
        Blocked early-stage latency in the peripheral blood cells of certain individuals infected with human immunodeficiency virus type 1.
        Proc Natl Acad Sci USA. 1992; 89: 10663-10667
        • Kim S.
        • Ikeuchi K.
        • Byrn R.
        • Groopman J.
        • Baltimore D.
        Lack of a negative influence on viral growth by the nef gene of human immunodeficiency virus type 1.
        Proc Natl Acad Sci USA. 1989; 86: 9544-9548
        • Folks T.M.
        • Justement J.
        • Kinter A.
        • Dinarello C.A.
        • Fauci A.S.
        Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line.
        Science. 1987; 238: 800-802
        • Koyanagi Y.
        • O'Brien W.A.
        • Zhao J.Q.
        • Golde D.W.
        • Gasson J.C.
        • Chen I.S.Y.
        Cytokines alter production of HIV from primary mononuclear phagocytes.
        Science. 1988; 241: 1673-1675
        • Folks T.M.
        • Clouse K.A.
        • Justement J.
        • et al.
        Tumor necrosis factor induces expression of human immunodeficiency virus in a chronically infected T-cell clone.
        Proc Natl Acad Sci USA. 1989; 86: 2365-2368
        • Lazdins J.K.
        • Klimkait T.
        • Alteri E.
        • et al.
        TGF-beta: upregulator of HIV replication in macrophages.
        Res Virol. 1991; 142: 239-242
        • Scott-Algara D.
        • Vuillier F.
        • Marasescu M.
        • de Saint Martin J.
        • Dighiero G.
        Serum levels of IL-2, IL-1 alpha, TNF-alpha, and soluble receptor of IL-2 in HIV-1-infected patients.
        AIDS Res Hum Retroviruses. 1991; 7: 381-386
        • von Sydow M.
        • Sonnerborg A.
        • Gaines H.
        • Strannegard O.
        Interferon-alpha and tumor necrosis factor-alpha in serum of patients in various stages of HIV-1 infection.
        AIDS Res Hum Retroviruses. 1991; 7: 375-380
        • Breen E.C.
        • Rezai A.R.
        • Nakajima K.
        • et al.
        Infection with HIV is associated with elevated IL-6 levels and production.
        J Immunol. 1990; 144: 480-484
        • Barcellini W.
        • Rizzardi G.P.
        • Poli G.
        • et al.
        Cytokines and soluble receptor changes in the transition from primary to early chronic HIV type 1 infection.
        AIDS Res Hum Retroviruses. 1996; 12: 325-331
        • Tyor W.R.
        • Glass J.D.
        • Griffin J.W.
        • et al.
        Cytokine expression in the brain during the acquired immunodeficiency syndrome.
        Ann Neurol. 1992; 31: 349-360
        • Zack J.A.
        • Cann A.J.
        • Lugo J.P.
        • Chen I.S.
        HIV-1 production from infected peripheral blood T cells after HTLV-I induced mitogenic stimulation.
        Science. 1988; 240: 1026-1029
        • Bukrinsky M.I.
        • Stanwick T.L.
        • Dempsey M.P.
        • Stevenson M.
        Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection.
        Science. 1991; 254: 423-427
        • Gartner S.
        • Markovits P.
        • Markovitz D.M.
        • Kaplan M.H.
        • Gallo R.C.
        • Popovic M.
        The role of mononuclear phagocytes in HTLV-III/LAV infection.
        Science. 1986; 233: 215-219
        • Valerie K.
        • Delers A.
        • Bruck C.
        • et al.
        Activation of human immunodeficiency virus type 1 by DNA damage in human cells.
        Nature. 1988; 333: 78-81
        • Morrey J.D.
        • Bourn S.M.
        • Bunch T.D.
        • et al.
        In vivo activation of human immunodeficiency virus type 1 long terminal repeat by UV type A (UV-A) light plus psoralen and UV-B light in the skin of transgenic mice.
        J Virol. 1991; 65: 5045-5051
        • Faure E.
        • Cavard C.
        • Zider A.
        • Guillet J.P.
        • Resbeut M.
        • Champion S.
        X irradiation-induced transcription from the HIV type 1 long terminal repeat.
        AIDS Res Hum Retroviruses. 1995; 11: 41-43
        • Verhofstede C.
        • Reniers S.
        • Van Wanzeele F.
        • Plum J.
        Evaluation of proviral copy number and plasma RNA level as early indicators of progression in HIV-1 infection: correlation with virological and immunological markers of disease.
        AIDS. 1994; 8: 1421-1427
        • Mellors J.W.
        • Kingsley L.A.
        • Rinaldo C.R.J.
        • et al.
        Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion.
        Ann Intern Med. 1995; 122: 573-579
        • Farzadegan H.
        • Henrard D.R.
        • Kleeberger C.A.
        • et al.
        Virologic and serologic markers of rapid progression to AIDS after HIV-1 seroconversion.
        J Acquir Immune Defic Syndr Hum Retrovirol. 1996; 13: 448-455
        • Giorgi J.V.
        • Hausner M.A.
        • Hultin L.E.
        Detailed immunophenotype of CD8+ memory cytotoxic T-lymphocytes (CTL) against HIV-1 with respect to expression of CD45RA/RO, CD62L and CD28 antigens.
        Immunol Lett. 1999; 66: 105-110
        • Gougeon M.L.
        • Lecoeur H.
        • Dulioust A.
        • et al.
        Programmed cell death in peripheral lymphocytes from HIV- infected persons: increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression.
        J Immunol. 1996; 156: 3509-3520
        • Bouscarat F.
        • Levacher-Clergeot M.
        • Dazza M.C.
        • et al.
        Correlation of CD8 lymphocyte activation with cellular viremia and plasma HIV RNA levels in asymptomatic patients infected by human immunodeficiency virus type 1.
        AIDS Res Hum Retroviruses. 1996; 12: 17-24
        • Benito J.M.
        • Zabay J.M.
        • Gil J.
        • et al.
        Quantitative alterations of the functionally distinct subsets of CD4 and CD8 T lymphocytes in asymptomatic HIV infection: changes in the expression of CD45RO, CD45RA, CD11b, CD38, HLA-DR, and CD25 antigens.
        J Acquir Immune Defic Syndr Hum Retrovirol. 1997; 14: 128-135
        • O'Brien W.A.
        • Grovit-Ferbas K.
        • Namazi A.
        • et al.
        Human immunodeficiency virus-type 1 replication can be increased in peripheral blood of seropositive patients after influenza vaccination.
        Blood. 1995; 86: 1082-1089
        • Staprans S.I.
        • Hamilton B.L.
        • Follansbee S.E.
        • et al.
        Activation of virus replication after vaccination of HIV-1-infected individuals.
        J Exp Med. 1995; 182: 1727-1737
        • Stanley S.K.
        • Ostrowski M.A.
        • Justement J.S.
        • et al.
        Effect of immunization with a common recall antigen on viral expression in patients infected with human immunodeficiency virus type 1.
        N Engl J Med. 1996; 334: 1222-1230
        • Brichacek B.
        • Swindells S.
        • Janoff E.N.
        • Pirruccello S.
        • Stevenson M.
        Increased plasma human immunodeficiency virus type 1 burden following antigenic challenge with pneumococcal vaccine.
        J Infect Dis. 1996; 174: 1191-1199
        • Cheeseman S.H.
        • Davaro R.E.
        • Ellison R.T.
        Hepatitis B vaccination and plasma HIV-1 RNA.
        N Engl J Med. 1996; 334: 1272
        • Jackson C.R.
        • Vavro C.L.
        • Valentine M.E.
        • et al.
        Effect of influenza immunization on immunologic and virologic characteristics of pediatric patients infected with human immunodeficiency virus.
        Pediatr Infect Dis J. 1997; 16: 200-204
        • Glesby M.J.
        • Hoover D.R.
        • Farzadegan H.
        • Margolick J.B.
        • Saah A.J.
        The effect of influenza vaccination on human immunodeficiency virus type 1 load: a randomized, double-blind, placebo-controlled study.
        J Infect Dis. 1996; 174: 1332-1336
        • Kovacs J.A.
        • Baseler M.
        • Dewar R.J.
        • et al.
        Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection: a preliminary study.
        N Engl J Med. 1995; 332: 567-575
        • Hughes M.D.
        • Johnson V.A.
        • Hirsch M.S.
        • et al.
        Monitoring plasma HIV-1 RNA levels in addition to CD4+ lymphocyte count improves assessment of antiretroviral therapeutic response.
        Ann Intern Med. 1997; 126: 929-938
        • O'Brien W.A.
        • Hartigan P.M.
        • Daar E.S.
        • Simberkoff M.S.
        • Hamilton J.D.
        Changes in plasma HIV RNA levels and CD4+ lymphocyte counts predict both response to antiretroviral therapy and therapeutic failure. VA Cooperative Study Group on AIDS.
        Ann Intern Med. 1997; 126: 939-945
        • Pierson T.
        • McArthur J.
        • Siliciano R.F.
        Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy.
        Annu Rev Immunol. 2000; 18: 665-708
        • Pantaleo G.
        • Graziosi C.
        • Demarest J.F.
        • et al.
        HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease.
        Nature. 1993; 362: 355-358
        • Finzi D.
        • Hermankova M.
        • Pierson T.
        • et al.
        Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy.
        Science. 1997; 278: 1295-1300
        • Siliciano J.D.
        • Siliciano R.F.
        Latency and viral persistence in HIV-1 infection.
        J Clin Invest. 2000; 106: 823-825
        • O'Brien W.A.
        • Mao S.H.
        • Cao Y.
        • Moore J.P.
        Macrophage-tropic and T-cell line-adapted chimeric strains of human immunodeficiency virus type 1 differ in their susceptibilities to neutralization by soluble CD4 at different temperatures.
        J Virol. 1994; 68: 5264-5269
        • Moore J.P.
        • Nara P.L.
        The role of the V3 loop of gp120 in HIV infection.
        AIDS. 1991; 5: S21-S33
        • O'Brien W.A.
        • Namazi A.
        • Mao S.-H.
        • Kalhor H.
        • Zack J.A.
        • Chen I.S.Y.
        Kinetics of human immunodeficiency virus type 1 reverse transcription in blood mononuclear phagocytes are slowed by limitations of nucleotide precursors.
        J Virol. 1994; 68: 1258-1263
        • Willey R.L.
        • Theodore T.S.
        • Martin M.A.
        Amino acid substitutions in the human immunodeficiency virus type 1 gp120 V3 loop that change viral tropism also alter physical and functional properties of the virion envelope.
        J Virol. 1994; 68: 4409-4419
        • Fultz P.N.
        • Vance P.J.
        • Endres M.J.
        • et al.
        In vivo attenuation of simian immunodeficiency virus by disruption of a tyrosine-dependent sorting signal in the envelope glycoprotein cytoplasmic tail.
        J Virol. 2001; 75: 278-291
        • Schultz T.F.
        • Reeves J.D.
        • Hoad J.G.
        • et al.
        Effect of mutations in the V3 loop of HIV-1 gp120 on infectivity and susceptibility to proteolytic cleavage.
        AIDS Res Hum Retroviruses. 1993; 9: 159-166
        • Overbaugh J.
        • Rudensey L.M.
        • Papenhausen M.D.
        • Benveniste R.E.
        • Morton W.R.
        Variation in simian immunodeficiency virus env is confined to V1 and V4 during progression to simian AIDS.
        J Virol. 1991; 65: 7025-7031
        • Shibata R.
        • Kawamura M.
        • Sakai H.
        • Hayami M.
        • Ishimoto A.
        • Adachi A.
        Generation of a chimeric human and simian immunodeficiency virus infectious to monkey peripheral blood mononuclear cells.
        J Virol. 1991; 65: 3514-3520
        • Bonyhadi M.L.
        • Kaneshima H.
        The SCID-hu mouse: an in vivo model for HIV-1 infection in humans.
        Mol Med Today. 1997; 3: 246-253
        • McCune J.M.
        • Namikawa R.
        • Kaneshima H.
        • Shultz L.D.
        • Leiberman M.
        • Weissman I.L.
        The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function.
        Science. 1988; 241: 1632-1639
        • Mosier D.E.
        • Gulizia R.J.
        • Baird S.M.
        • Wilson D.B.
        Transfer of a functional human immune system to mice with severe combined immunodeficiency.
        Nature. 1988; 335: 256-259
        • Mosier D.E.
        • Gulizia R.J.
        • Baird S.M.
        • Wilson D.B.
        • Spector D.H.
        • Spector S.A.
        Human immunodeficiency virus infection of human-PBL-SCID mice.
        Science. 1991; 851: 791-794
        • Tary-Lehmann M.
        • Saxon A.
        Human mature T cells that are anergic in vivo prevail in SCID mice reconstituted with human peripheral blood.
        J Exp Med. 1991; 175: 503-516
        • Aldrovandi G.M.
        • Feuer G.
        • Gao L.
        • et al.
        The SCID-hu mouse as a model for HIV-1 infection.
        Nature. 1993; 363: 732-736
        • Bonyhadi M.L.
        • Rabin L.
        • Salimi S.
        • et al.
        HIV induces thymus depletion in vivo.
        Nature. 1993; 363: 728-732
        • Kaneshima H.
        • Su L.
        • Bonyhadi M.L.
        • Connor R.I.
        • Ho D.D.
        • McCune J.M.
        Rapid-high, syncytium-inducing isolates of human immunodeficiency virus type 1 induce cytopathicity in the human thymus of the SCID-hu mouse.
        J Virol. 1994; 68: 8188-8192