Advertisement
Review article| Volume 22, ISSUE 3, P773-797, September 2002

CD8+ T-cell immunity to HIV infection

      Since the first cases were reported in the early 1980s, the AIDS epidemic has grown to alarming proportions both in the United States and the rest of the world, particularly in sub-Saharan Africa. The total number of people living with HIV-1 infection has reached 40 million, with 5 million new infections in year 2000 alone. In the light of numerous efforts to control the progression of the disease in infected subjects and the spread of the infection in the general population, remarkable success has been achieved since 1995 with the use of combination antiviral treatments. Safe, prophylactic and therapeutic vaccines are still under study, however, and considered to be many years in the future.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Laboratory Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Saag M.S.
        • Hahn B.H.
        • Gibbons J.
        • et al.
        Extensive variation of human immunodeficiency virus type-1 in vivo.
        Nature. 1988; 334: 440-444
        • Fellay J.
        • Boubaker K.
        • Ledergerber B.
        • et al.
        Prevalence of adverse events associated with potent antiretroviral treatment: Swiss HIV-1 Cohort Study.
        Lancet. 2001; 358: 1322-1327
        • Kalams S.A.
        • Walker B.
        The cytotoxic T-lymphocyte response in HIV-1 infection.
        Clin Lab Med. 1994; 14: 271-299
        • Doherty P.C.
        • Christensen J.P.
        Accessing complexity: the dynamics of virus-specific T cell responses.
        Annu Rev Immunol. 2000; 18: 561-592
        • Banchereau J.
        • Briere F.
        • Caux C.
        • et al.
        Immunobiology of dendritic cells.
        Ann Rev Immunol. 2000; 18: 767-811
        • Ogg G.S.
        • McMichael A.J.
        HLA-peptide tetrameric complexes.
        Curr Opin Immunol. 1998; 10: 393-396
        • Murali-Krishna K.
        • Altman J.D.
        • Suresh M.
        • et al.
        Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection.
        Immunity. 1998; 8: 177-187
        • Goulder P.J.
        • Tang Y.
        • Brander C.
        • et al.
        Functionally inert HIV-1-specific cytotoxic T lymphocytes do not play a major role in chronically infected adults and children.
        J Exp Med. 2000; 192: 1819-1832
        • Altman J.D.
        • Moss P.A.
        • Goulder P.J.
        • et al.
        Phenotypic analysis of antigen-specific T lymphocytes.
        Science. 1996; 274: 94-96
        • Korber B.T.M.
        • Brander C.
        • Haynes B.F.
        • et al.
        HIV molecular immunology database 2000. Los Alamos National Laboratory: theoretical biology and biophysics. Los Alamos National Laboratory, Los Alamos (NM)2000
        • Betts M.R.
        • Ambrozak D.R.
        • Douek D.C.
        • et al.
        Analysis of total human immunodeficiency virus (HIV)-specific CD4(+) and CD8(+) T-cell responses: relationship to viral load in untreated HIV infection.
        J Virol. 2000; 75: 11983-11991
        • Betts M.R.
        • Casazza J.P.
        • Koup R.A.
        Monitoring HIV-specific CD8+ T cell responses by intracellular cytokine production.
        Immunol Lett. 2001; 79: 117-125
        • Redchenko I.V.
        • Rickinson A.B.
        Accessing Epstein-Barr virus-specific T-cell memory with peptide-loaded dendritic cells.
        J Virol. 1999; 73: 334-342
        • Wang Q.J.
        • Huang X.-L.
        • Rappocciolo G.
        • et al.
        Identification of an HLA-A∗0201 restricted CD8+ T cell epitope for the glycoprotein B homolog of human herpesvirus 8.
        Blood. 2002; 99: 3360-3366
        • Jin X.
        • Roberts C.G.
        • Nixon D.F.
        • et al.
        Identification of subdominant cytotoxic T lymphocyte epitopes encoded by autologous HIV type 1 sequences, using dendritic cell stimulation and computer-driven algorithm.
        AIDS Res Hum Retroviruses. 2000; 16: 67-76
        • Rowland-Jones S.L.
        • McMichael A.
        Immune responses in HIV-exposed seronegatives: have they repelled the virus?.
        Curr Opin Immunol. 1995; 7: 448-455
        • Kaul R.
        • Plummer F.A.
        • Kimani J.
        • et al.
        HIV-1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-resistant prostitutes in Nairobi.
        J Immunol. 2000; 164: 1602-1611
        • Kaul R.
        • Rowland-Jones S.L.
        • Kimani J.
        • et al.
        New insights into HIV-1 specific cytotoxic T-lymphocyte responses in exposed, persistently seronegative Kenyan sex workers.
        Immunol Lett. 2001; 79: 3-13
        • Rowland-Jones S.L.
        • Dong T.
        • Fowke K.R.
        • et al.
        Cytotoxic T cell responses to multiple conserved HIV-1 epitopes in HIV-1-resistant prostitutes in Nairobi.
        J Clin Invest. 1998; 102: 1758-1765
        • Rowland-Jones S.L.
        • Sutton J.
        • Ariyoshi K.
        • et al.
        HIV-1-specific cytotoxic T cells in HIV-1-exposed but uninfected Gambian women.
        Nat Med. 1995; 1: 59-64
        • Schmechel S.C.
        • Russell N.
        • Hladik F.
        • et al.
        Immune defence against HIV-1 infection in HIV-1 exposed seronegative persons.
        Immunol Lett. 2001; 79: 21-27
        • Clapham P.R.
        • McKnight A.
        HIV-1 receptors and cell tropism.
        Br Med Bull. 2001; 58: 43-59
        • Stranford S.A.
        • Skurnick J.
        • Louria D.
        • et al.
        Lack of infection in HIV-exposed individuals is associated with a strong CD8(+) cell noncytotoxic anti-HIV response.
        Proc Natl Acad Sci USA. 1999; 96: 1030-1035
        • Lieberman J.
        • Shankar P.
        • Manjunath N.
        • et al.
        Dressed to kill? A review of why antiviral CD8 T lymphocytes fail to prevent progressive immunodeficiency in HIV-1 infection.
        Blood. 2001; 98: 1667-1677
        • Rowland-Jones S.L.
        • Pinheiro S.
        • Kaul R.
        • et al.
        How important is the ‘quality’ of the cytotoxic T lymphocyte (CTL) response in protection against HIV-1 infection?.
        Immunol Lett. 2001; 79: 15-20
        • Murphey-Corb M.
        • Wilson L.A.
        • Trichel A.M.
        • et al.
        Selective induction of protective MHC class I-restricted CTL in the intestinal lamina propria of rhesus monkeys by transient SIV infection of the colonic mucosa.
        J Immunol. 1999; 162: 540-549
        • Mellors J.W.
        • Rinaldo Jr., C.R.
        • Gupta P.
        • et al.
        Prognosis in HIV-1 infection predicted by the quantity of virus in plasma.
        Science. 1996; 272: 1167-1170
        • Borrow P.
        • Lewicki H.
        • Hahn B.H.
        • et al.
        Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection.
        J Virol. 1994; 68: 6103-6110
        • Koup R.A.
        • Safrit J.T.
        • Cao Y.
        • et al.
        Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome.
        J Virol. 1994; 68: 4650-4655
        • Jin X.
        • Bauer D.E.
        • Tuttleton S.E.
        • et al.
        Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques.
        J Exp Med. 1999; 189: 991-998
        • Matano T.
        • Shibata R.
        • Siemon C.
        • et al.
        Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques.
        J Virol. 1998; 72: 164-169
        • Metzner K.J.
        • Jin X.
        • Lee F.V.
        Effects of in vivo CD8(+) T cell depletion on virus replication in rhesus macaques immunized with a live, attenuated simian immunodeficiency virus vaccine.
        J Exp Med. 2000; 191: 1921-1931
        • Schmitz J.E.
        • Kuroda M.J.
        • Santra S.
        • et al.
        Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes.
        Science. 1999; 283: 857-860
        • Demarest J.F.
        • Jack N.
        • Cleghorn F.R.
        • et al.
        Immunologic and virologic analyses of an acutely HIV type 1-infected patient with extremely rapid disease progression.
        AIDS Res Hum Retroviruses. 2001; 17: 1333-1344
        • Rinaldo Jr., C.R.
        • Beltz L.A.
        • Huang X.L.
        • et al.
        Anti-HIV type 1 cytotoxic T lymphocyte effector activity and disease progression in the first 8 years of HIV type 1 infection of homosexual men.
        AIDS Res Hum Retroviruses. 1995; 11: 481-489
        • Levy J.A.
        The importance of the innate immune system in controlling HIV infection and disease.
        Trends Immunol. 2001; 22: 312-316
        • Gea-Banacloche J.C.
        • Migueles S.A.
        • Martino L.
        • et al.
        Maintenance of large numbers of virus-specific CD8+ T cells in HIV-infected progressors and long-term nonprogressors.
        J Immunol. 2000; 165: 1082-1092
        • Goepfert P.A.
        • Bansal A.
        • Edwards B.H.
        • et al.
        A significant number of human immunodeficiency virus epitope-specific cytotoxic T lymphocytes detected by tetramer binding do not produce gamma interferon.
        J Virol. 2000; 74: 10249-10255
        • Kostense S.
        • Ogg G.S.
        • Manting E.H.
        • et al.
        High viral burden in the presence of major HIV-1-specific CD8(+) T cell expansions: evidence for impaired CTL effector function.
        Eur J Immunol. 2001; 31: 677-686
        • Vogel T.U.
        • Allen T.M.
        • Altman J.D.
        • et al.
        Functional impairment of simian immunodeficiency virus-specific CD8+ T cells during the chronic phase of infection.
        J Virol. 2001; 75: 2458-2461
        • Zajac A.J.
        • Blattman J.N.
        • Murali-Krishna K.
        • et al.
        Viral immune evasion due to persistence of activated T cells without effector function.
        J Exp Med. 1998; 188: 2205-2213
        • Rosenberg E.S.
        • Billingsley J.M.
        • Caliendo A.M.
        • et al.
        Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia.
        Science. 1997; 278: 1447-1450
        • Kalams S.A.
        • Buchbinder S.P.
        • Rosenberg E.S.
        • et al.
        Association between virus-specific cytotoxic T-lymphocyte and helper responses in human immunodeficiency virus type 1 infection.
        J Virol. 1999; 73: 6715-6720
        • Kornbluth R.S.
        The emerging role of CD40 ligand in HIV infection.
        J Leukoc Biol. 2000; 68: 373-382
        • Appay V.
        • Nixon D.F.
        • Donahoe S.M.
        • et al.
        HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function.
        J Exp Med. 2000; 192: 63-75
        • Trimble L.A.
        • Shankar P.
        • Patterson M.
        • et al.
        Human immunodeficiency virus-specific circulating CD8 T lymphocytes have down-modulated CD3zeta and CD28, key signaling molecules for T-cell activation.
        J Virol. 2000; 74: 7320-7330
        • Trimble L.A.
        • Lieberman J.
        Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3 zeta, the signaling chain of the T-cell receptor complex.
        Blood. 1998; 91: 585-594
        • Kaslow R.A.
        • Carrington M.
        • Apple R.
        • et al.
        Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection.
        Nat Med. 1996; 2: 405-411
        • Carrington M.
        • Nelson G.W.
        • Martin M.P.
        • et al.
        HLA and HIV-1: heterozygote advantage and B∗35-Cw∗04 disadvantage.
        Science. 1999; 283: 1748-1752
        • Gao X.
        • Nelson G.W.
        • Karacki P.
        • et al.
        Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS.
        N Engl J Med. 2001; 344: 1668-1675
        • Migueles S.A.
        • Sabbaghian M.S.
        • Shupert W.L.
        • et al.
        HLA B∗5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors.
        Proc Natl Acad Sci USA. 2000; 97: 2709-2714
        • Pantaleo G.
        • Demarest J.F.
        • Soudeyns H.
        • et al.
        Major expansion of CD8+ T cells with predominant V beta usage during primary immune response to HIV.
        Nature. 1994; 370: 463-467
        • Wilson J.D.
        • Ogg G.S.
        • Allen R.L.
        • et al.
        Oligoclonal expansions of CD8+ T cells in chronic HIV infection are antigen specific.
        J Exp Med. 1998; 188: 785-790
        • Tortorella D.
        • Gewurz B.E.
        • Furman M.H.
        • et al.
        Viral subversion of the immune system.
        Annu Rev Immunol. 2000; 18: 861-926
        • Goulder P.J.
        • Price D.
        • Nowak M.
        • et al.
        Co-evolution of human immunodeficiency virus and cytotoxic T-lymphocyte responses.
        Immunol Rev. 1997; 159: 17-29
        • O'Connor D.
        • Friedrich T.
        • Hughes A.
        • et al.
        Understanding cytotoxic T-lymphocyte escape during simian immunodeficiency virus infection.
        Immunol Rev. 2001; 183: 115-126
        • Goulder P.J.
        • Altfeld M.A.
        • Rosenberg E.S.
        • et al.
        Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection.
        J Exp Med. 2001; 193: 181-194
        • Mothe B.R.
        • Horton H.
        • Carter D.K.
        • et al.
        Dominance of CD8 responses specific for epitopes bound by a single major histocompatibility complex class I molecule during the acute phase of viral infection.
        J Virol. 2002; 76: 875-884
        • Borrow P.
        • Lewicki H.
        • Wei X.
        • et al.
        Anti-viral pressure exerted by HIV-1–1-specific cytotoxic T lymphocytes (CTL) during primary infection demonstrated by rapid selection of CTL escape virus.
        Nat Med. 1997; 3: 205-211
        • Allen T.M.
        • O'Connor D.H.
        • Jing P.
        • et al.
        Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia.
        Nature. 2000; 407: 386-390
        • Evans T.G.
        • Keefer M.C.
        • Weinhold K.J.
        • et al.
        A canarypox vaccine expressing multiple human immunodeficiency virus type 1 genes given alone or with rgp120 elicits broad and durable CD8+ cytotoxic T lymphocyte responses in seronegative volunteers.
        J Infect Dis. 1999; 180: 290-298
        • Goulder P.J.
        • Phillips R.E.
        • Colbert R.A.
        • et al.
        Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS.
        Nat Med. 1997; 3: 212-216
        • Goulder P.J.
        • Brander C.
        • Tang Y.
        • et al.
        Evolution and transmission of stable CTL escape mutations in HIV-1 infection.
        Nature. 2001; 412: 334-338
        • Kelleher A.D.
        • Long C.
        • Holmes E.C.
        • et al.
        Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses.
        J Exp Med. 2001; 193: 375-386
        • Ossendorp F.
        • Eggers M.
        • Neisig A.
        • et al.
        A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation.
        Immunity. 1996; 5: 115-124
        • Buseyne F.
        • Riviere Y.
        The flexibility of the TCR allows recognition of a large set of naturally occurring epitope variants by HIV-1-specific cytotoxic T lymphocytes.
        Int Immunol. 2001; 13: 941-950
        • Klenerman P.
        • Zinkernagel R.M.
        Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes.
        Nature. 1998; 394: 482-485
        • Purbhoo M.A.
        • Sewell A.K.
        • Klenerman P.
        • et al.
        Copresentation of natural HIV-1 agonist and antagonist ligands fails to induce the T cell receptor signaling cascade.
        Proc Natl Acad Sci USA. 1998; 95: 4527-4532
        • Bouhdoud L.
        • Villain P.
        • Merzouki A.
        • et al.
        T-cell receptor-mediated anergy of a human immunodeficiency virus (HIV-1) gp120-specific CD4(+) cytotoxic T-cell clone, induced by a natural HIV-1 type 1 variant peptide.
        J Virol. 2000; 74: 2121-2130
        • Howcroft T.K.
        • Strebel K.
        • Martin M.A.
        • et al.
        Repression of MHC class I gene promoter activity by two-exon Tat of HIV.
        Science. 1993; 260: 1320-1322
        • Kerkau T.
        • Bacik I.
        • Bennink J.R.
        • et al.
        The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules.
        J Exp Med. 1997; 185: 1295-1305
        • Schwartz O.
        • Marechal V.
        • Le Gall S.
        • et al.
        Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein.
        Nat Med. 1996; 2: 338-342
        • Collins K.L.
        • Chen B.K.
        • Kalams S.A.
        • et al.
        HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes.
        Nature. 1998; 391: 397-401
        • Swann S.A.
        • Williams M.
        • Story C.M.
        • et al.
        HIV-1 Nef blocks transport of MHC class I molecules to the cell surface via a PI 3-kinase-dependent pathway.
        Virology. 2001; 282: 267-277
        • Cohen G.B.
        • Gandhi R.T.
        • Davis D.M.
        • et al.
        The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-1-infected cells from NK cells.
        Immunity. 1999; 10: 661-671
        • Xu X.N.
        • Screaton G.R.
        • Gotch F.M.
        • et al.
        Evasion of cytotoxic T lymphocyte (CTL) responses by nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells.
        J Exp Med. 1997; 186: 7-16
        • Xu X.N.
        • Laffert B.
        • Screaton G.R.
        • et al.
        Induction of Fas ligand expression by HIV involves the interaction of Nef with the T cell receptor zeta chain.
        J Exp Med. 1999; 189: 1489-1496
        • Vlahakis S.R.
        • Algeciras-Schimnich A.
        • Bou G.
        • et al.
        Chemokine-receptor activation by env determines the mechanism of death in HIV-infected and uninfected T lymphocytes.
        J Clin Invest. 2001; 107: 207-215
        • Finkel T.H.
        • Tudor-Williams G.
        • Banda N.K.
        • et al.
        Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes.
        Nat Med. 1995; 1: 129-134
        • Kitchen S.G.
        • Korin Y.D.
        • Roth M.D.
        • et al.
        Costimulation of naive CD8(+) lymphocytes induces CD4 expression and allows human immunodeficiency virus type 1 infection.
        J Virol. 1998; 72: 9054-9060
        • Saha K.
        • Zhang J.
        • Gupta A.
        • et al.
        Isolation of primary HIV-1 that target CD8+ T lymphocytes using CD8 as a receptor.
        Nat Med. 2001; 7: 65-72
        • Saha K.
        • Zhang J.
        • Zerhouni B.
        Evidence of productively infected CD8+ T cells in patients with AIDS: implications for HIV-1 pathogenesis.
        J Acquir Immune Defic Syndr Hum Retrovirol. 2001; 26: 199-207
        • Easterbrook P.J.
        • Schrager L.K.
        Long-term nonprogression in HIV infection: methodological issues and scientific priorities. Report of an international European community-National Institutes of Health Workshop, The Royal Society, London, England, November 27–29, 1995. Scientific Coordinating Committee.
        AIDS Res Hum Retroviruses. 1998; 14: 1211-1228
        • Harrer T.
        • Harrer E.
        • Kalams S.A.
        • et al.
        Strong cytotoxic T cell and weak neutralizing antibody responses in a subset of persons with stable nonprogressing HIV type 1 infection.
        AIDS Res Hum Retroviruses. 1996; 12: 585-592
        • Klein M.R.
        • van Baalen C.A.
        • Holwerda A.M.
        • et al.
        Kinetics of Gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: a longitudinal analysis of rapid progressors and long-term asymptomatics.
        J Exp Med. 1995; 181: 1365-1372
        • Rinaldo C.
        • Huang X.L.
        • Fan Z.
        • et al.
        High levels of anti-human immunodeficiency virus type 1 (HIV-1) memory cytotoxic T-lymphocyte activity and low viral load are associated with lack of disease in HIV-1-infected long-term nonprogressors.
        J Virol. 1995; 69: 5838-5842
        • Landay A.L.
        • Mackewicz C.E.
        • Levy J.A.
        An activated CD8+ T cell phenotype correlates with anti-HIV activity and asymptomatic clinical status.
        Clin Immunol Immunopathol. 1993; 69: 106-116
        • Chun T.W.
        • Justement J.S.
        • Moir S.
        • et al.
        Suppression of HIV replication in the resting CD4+ T cell reservoir by autologous CD8+ T cells: implications for the development of therapeutic strategies.
        Proc Natl Acad Sci USA. 2001; 98: 253-258
        • Clerici M.
        • Balotta C.
        • Meroni L.
        • et al.
        Type 1 cytokine production and low prevalence of viral isolation correlate with long-term nonprogression in HIV infection.
        AIDS Res Hum Retroviruses. 1996; 12: 1053-1061
        • Migueles S.A.
        • Connors M.
        Frequency and function of HIV-specific CD8(+) T cells.
        Immunol Lett. 2001; 79: 141-150
        • Lefrere J.J.
        • Morand-Joubert L.
        • Mariotti M.
        • et al.
        Even individuals considered as long-term nonprogressors show biological signs of progression after 10 years of human immunodeficiency virus infection.
        Blood. 1997; 90: 1133-1140
        • Rhodes D.I.
        • Ashton L.
        • Solomon A.
        • et al.
        Characterization of three nef-defective human immunodeficiency virus type 1 strains associated with long-term nonprogression. Australian Long-Term Nonprogressor Study Group.
        J Virol. 2000; 74: 10581-10588
        • Richman D.D.
        HIV chemotherapy.
        Nature. 2001; 410: 995-1001
        • Dalod M.
        • Harzic M.
        • Pellegrin I.
        • et al.
        Evolution of cytotoxic T lymphocyte responses to human immunodeficiency virus type 1 in patients with symptomatic primary infection receiving antiretroviral triple therapy.
        J Infect Dis. 1998; 178: 61-69
        • Soudeyns H.
        • Campi G.
        • Rizzardi G.P.
        • et al.
        Initiation of antiretroviral therapy during primary HIV-1 infection induces rapid stabilization of the T-cell receptor beta chain repertoire and reduces the level of T-cell oligoclonality.
        Blood. 2000; 95: 1743-1751
        • Carcelain G.
        • Debre P.
        • Autran B.
        Reconstitution of CD4+ T lymphocytes in HIV-infected individuals following antiretroviral therapy.
        Curr Opin Immunol. 2001; 13: 483-488
        • Douek D.C.
        • McFarland R.D.
        • Keiser P.H.
        • et al.
        Changes in thymic function with age and during the treatment of HIV infection.
        Nature. 1998; 396: 690-695
        • Kalams S.A.
        • Goulder P.J.
        • Shea A.K.
        • et al.
        Levels of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte effector and memory responses decline after suppression of viremia with highly active antiretroviral therapy.
        J Virol. 1999; 73: 6721-6728
        • Ogg G.S.
        • Jin X.
        • Bonhoeffer S.
        • et al.
        Decay kinetics of human immunodeficiency virus-specific effector cytotoxic T lymphocytes after combination antiretroviral therapy.
        J Virol. 1999; 73: 797-800
        • Rinaldo Jr., C.R.
        • Huang X.L.
        • Fan Z.
        • et al.
        Anti-human immunodeficiency virus type 1 (HIV-1) CD8(+) T-lymphocyte reactivity during combination antiretroviral therapy in HIV-1-infected patients with advanced immunodeficiency.
        J Virol. 2000; 74: 4127-4138
        • Spiegel H.M.
        • DeFalcon E.
        • Ogg G.S.
        • et al.
        Changes in frequency of HIV-1-specific cytotoxic T cell precursors and circulating effectors after combination antiretroviral therapy in children.
        J Infect Dis. 1999; 180: 359-368
        • Autran B.
        • Carcelain G.
        • Li T.S.
        • et al.
        Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease.
        Science. 1997; 277: 112-116
        • Chougnet C.
        • Jankelevich S.
        • Fowke K.
        • et al.
        Long-term protease inhibitor-containing therapy results in limited improvement in T cell function but not restoration of interleukin-12 production in pediatric patients with aids.
        J Infect Dis. 2001; 184: 201-205
        • Essajee S.M.
        • Kim M.
        • Gonzalez C.
        • et al.
        Immunologic and virologic responses to HAART in severely immunocompromised HIV-1-infected children.
        AIDS. 1999; 13: 2523-2532
        • Pontesilli O.
        • Kerkhof-Garde S.
        • Notermans D.W.
        • et al.
        Functional T cell reconstitution and human immunodeficiency virus-1-specific cell-mediated immunity during highly active antiretroviral therapy.
        J Infect Dis. 1999; 180: 76-86
        • Rinaldo Jr., C.R.
        • Liebmann J.M.
        • Huang X.L.
        • et al.
        Prolonged suppression of human immunodeficiency virus type 1 (HIV-1) viremia in persons with advanced disease results in enhancement of CD4 T cell reactivity to microbial antigens but not to HIV-1 antigens.
        J Infect Dis. 1999; 179: 329-336
        • Ortiz G.M.
        • Wellons M.
        • Brancato J.
        • et al.
        Structured antiretroviral treatment interruptions in chronically HIV-1-infected subjects.
        Proc Natl Acad Sci USA. 2001; 98: 13288-13293
        • Lori F.
        • Lisziewicz J.
        Structured treatment interruptions for the management of HIV infection.
        JAMA. 2001; 286: 2981-2987
        • Rosenberg E.S.
        • Altfeld M.
        • Poon S.H.
        • et al.
        Immune control of HIV-1–1 after early treatment of acute infection.
        Nature. 2000; 407: 523-526
        • Carcelain G.
        • Tubiana R.
        • Samri A.
        • et al.
        Transient mobilization of human immunodeficiency virus (HIV)-specific CD4 T-helper cells fails to control virus rebounds during intermittent antiretroviral therapy in chronic HIV type 1 infection.
        J Virol. 2001; 75: 234-241
        • Haslett P.A.
        • Nixon D.F.
        • Shen Z.
        • et al.
        Strong human immunodeficiency virus (HIV)-specific CD4+ T cell responses in a cohort of chronically infected patients are associated with interruptions in anti-HIV chemotherapy.
        J Infect Dis. 2000; 181: 1264-1272
        • Lisziewicz J.
        • Rosenberg E.
        • Lieberman J.
        • et al.
        Control of HIV-1 despite the discontinuation of antiretroviral therapy.
        N Engl J Med. 1999; 340: 1683-1684
        • Mollet L.
        • Li T.S.
        • Samri A.
        • et al.
        Dynamics of HIV-1-specific CD8+ T lymphocytes with changes in viral load. The RESTIM and COMET Study Groups.
        J Immunol. 2000; 165: 1692-1704
        • Ortiz G.M.
        • Nixon D.F.
        • Trkola A.
        • et al.
        HIV-1-specific immune responses in subjects who temporarily contain virus replication after discontinuation of highly active antiretroviral therapy.
        J Clin Invest. 1999; 104: R13-R18
        • Papasavvas E.
        • Ortiz G.M.
        • Gross R.
        • et al.
        Enhancement of human immunodeficiency virus type 1-specific CD4 and CD8 T cell responses in chronically infected persons after temporary treatment interruption.
        J Infect Dis. 2000; 182: 766-775
        • Ruiz L.
        • Carcelain G.
        • Martinez-Picado J.
        • et al.
        HIV-1 dynamics and T-cell immunity after three structured treatment interruptions in chronic HIV-1 infection.
        AIDS. 2001; 15: F19-F27
        • Lifson J.D.
        • Rossio J.L.
        • Piatak Jr., M.
        • et al.
        Role of CD8(+) lymphocytes in control of simian immunodeficiency virus infection and resistance to rechallenge after transient early antiretroviral treatment.
        J Virol. 2001; 75: 10187-10199
        • Lori F.
        • Lewis M.G.
        • Xu J.
        • et al.
        Control of SIV rebound through structured treatment interruptions during early infection.
        Science. 2000; 290: 1591-1593
        • Sereti I.
        • Lane H.C.
        Immunopathogenesis of human immunodeficiency virus: implications for immune-based therapies.
        Clin Infect Dis. 2001; 32: 1738-1755
        • Barouch D.H.
        • Craiu A.
        • Kuroda M.J.
        • et al.
        Augmentation of immune responses to HIV-1 and simian immunodeficiency virus DNA vaccines by IL-2/Ig plasmid administration in rhesus monkeys.
        Proc Natl Acad Sci USA. 2000; 97: 4192-4197
        • Barouch D.H.
        • Santra S.
        • Schmitz J.E.
        • et al.
        Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination.
        Science. 2000; 290: 486-492
        • Fan Z.
        • Huang X.L.
        • Zheng L.
        • et al.
        Cultured blood dendritic cells retain HIV-1 antigen-presenting capacity for memory CTL during progressive HIV-1 infection.
        J Immunol. 1997; 159: 4973-4982
        • Zheng L.
        • Huang X.L.
        • Fan Z.
        • et al.
        Delivery of liposome-encapsulated HIV type 1 proteins to human dendritic cells for stimulation of HIV type 1-specific memory cytotoxic T lymphocyte responses.
        AIDS Res Hum Retroviruses. 1999; 15: 1011-1020
        • Fan Z.
        • Huang X.L.
        • Borowski L.
        • et al.
        Restoration of anti-human immunodeficiency virus type 1 (HIV-1) responses in CD8+ T cells from late-stage patients on prolonged antiretroviral therapy by stimulation in vitro with HIV-1 protein-loaded dendritic cells.
        J Virol. 2001; 75: 4413-4419
        • Schlienger K.
        • Craighead N.
        • Lee K.P.
        • et al.
        Efficient priming of protein antigen-specific human CD4(+) T cells by monocyte-derived dendritic cells.
        Blood. 2000; 96: 3490-3498
        • Zhao X.Q.
        • Huang X.L.
        • Gupta P.
        • et al.
        Induction of anti-human immunodeficiency virus type 1 (HIV-1) CD8+ - and CD4+ - T–cell reactivity by dendritic cells loaded with HIV-1 X4-infected apoptotic cells.
        J Virol. 2002; 76: 3007-3014
        • Canque B.Y.
        • Bakri S.
        • Camus M.
        • et al.
        The susceptibility to X4 and R5 human immunodeficiency virus-1 strains of dendritic cells derived in vitro from CD34+ hematopoietic progenitor cells is primarily determined by their maturation stage.
        Blood. 1999; 93: 3866-3875
        • Granelli-Piperno A.E.
        • Delgado V.
        • Finkel W.
        • et al.
        Immature dendritic cells selectively replicate macrophage tropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells.
        J Virol. 1998; 72: 2733-2737
        • Sabin A.B.
        Improbability of effective vaccination against human immunodeficiency virus because of its intracellular transmission and rectal portal of entry.
        Proc Natl Acad Sci USA. 1992; 89: 8852-8855
        • Klein M.
        Current progress in the development of human immunodeficiency virus vaccines: research and clinical trials.
        Vaccine. 2001; 19: 2210-2215
        • Nabel G.J.
        Challenges and opportunities for development of an AIDS vaccine.
        Nature. 2001; 410: 1002-1007
        • Calarota S.A.
        • Wahren B.
        Cellular HIV-1 immune responses in natural infection and after genetic immunization.
        Scand J Infect Dis. 2001; 33: 83-96
        • Ferrari G.
        • Humphrey W.
        • McElrath M.J.
        Clade B-based HIV-1 vaccines elicit cross-clade cytotoxic T lymphocyte reactivities in uninfected volunteers.
        Proc Natl Acad Sci USA. 1997; 94: 1396-1401
        • Shibata R.
        • Kawamura M.
        • Sakai H.
        • et al.
        Generation of a chimeric human and simian immunodeficiency virus infectious to monkey peripheral blood mononuclear cells.
        J Virol. 1991; 65: 3514-3520
        • Barouch D.H.
        • Craiu A.
        • Santra S.
        • et al.
        Elicitation of high-frequency cytotoxic T-lymphocyte responses against both dominant and subdominant simian-human immunodeficiency virus epitopes by DNA vaccination of rhesus monkeys.
        J Virol. 2001; 75: 2462-2467
        • Seth A.
        • Ourmanov I.
        • Schmitz J.E.
        • et al.
        Immunization with a modified vaccinia virus expressing simian immunodeficiency virus (SIV) Gag-Pol primes for an anamnestic Gag-specific cytotoxic T-lymphocyte response and is associated with reduction of viremia after SIV challenge.
        J Virol. 2000; 74: 2502-2509
        • Heeney J.
        • Akerblom L.
        • Barnett S.
        • et al.
        HIV-1 vaccine-induced immune responses which correlate with protection from SHIV infection: compiled preclinical efficacy data from trials with ten different HIV-1 vaccine candidates.
        Immunol Lett. 1999; 66: 189-195
        • Cafaro A.
        • Titti F.
        • Fracasso C.
        • et al.
        Vaccination with DNA containing tat coding sequences and unmethylated CpG motifs protects cynomolgus monkeys upon infection with simian/human immunodeficiency virus (SHIV89.6P).
        Vaccine. 2001; 19: 2862-2877
        • Kent S.J.
        • Zhao A.
        • Dale C.J.
        • et al.
        A recombinant avipoxvirus HIV-1 vaccine expressing interferon-gamma is safe and immunogenic in macaques.
        Vaccine. 2000; 18: 2250-2256
        • Benson J.
        • Chougnet C.
        • Robert-Guroff M.
        • et al.
        Recombinant vaccine-induced protection against the highly pathogenic simian immunodeficiency virus SIV(mac251): dependence on route of challenge exposure.
        J Virol. 1998; 72: 4170-4182
        • Robinson H.L.
        • Montefiori D.C.
        • Johnson R.P.
        • et al.
        DNA priming and recombinant pox virus boosters for an AIDS vaccine.
        Dev Biol (Basel). 2000; 104: 93-100
        • Polacino P.
        • Stallard V.
        • Klaniecki J.E.
        • et al.
        Limited breadth of the protective immunity elicited by simian immunodeficiency virus SIVmne gp160 vaccines in a combination immunization regimen.
        J Virol. 1999; 73: 618-630
        • Amara R.R.
        • Villinger F.
        • Altman J.D.
        • et al.
        Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine.
        Science. 2001; 292: 69-74
        • Shiver J.W.
        • Fu T.M.
        • Chen L.
        • et al.
        Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity.
        Nature. 2002; 415: 331-335
        • Barouch D.H.
        • Kunstman J.
        • Kuroda M.J.
        • et al.
        Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes.
        Nature. 2002; 415: 335-339
        • Lifson J.D.
        • Martin M.A.
        One step forwards, one step back.
        Nature. 2002; 415: 272-273
        • Plata F.
        • Autran B.
        • Martins L.P.
        • et al.
        AIDS virus-specific cytotoxic T lymphocytes in lung disorders.
        Nature. 1987; 328: 348-351
        • Walker B.D.
        • Chakrabarti S.
        • Moss B.
        • et al.
        HIV-specific cytotoxic T lymphocytes in seropositive individuals.
        Nature. 1987; 328: 345-348
        • Allen T.M.
        • Vogel T.U.
        • Fuller D.H.
        • et al.
        Induction of AIDS virus-specific CTL activity in fresh, unstimulated peripheral blood lymphocytes from rhesus macaques vaccinated with a DNA prime/modified vaccinia virus Ankara boost regimen.
        J Immunol. 2000; 164: 4968-4978
        • Barouch D.H.
        • Santra S.
        • Kuroda M.J.
        • et al.
        Reduction of simian-human immunodeficiency virus 89.6P viremia in rhesus monkeys by recombinant modified vaccinia virus Ankara vaccination.
        J Virol. 2001; 75: 5151-5158
        • Calarota S.A.
        • Leandersson A.C.
        • Bratt G.
        • et al.
        Immune responses in asymptomatic HIV-1-infected patients after HIV-DNA immunization followed by highly active antiretroviral treatment.
        J Immunol. 1999; 163: 2330-2338
        • Egan M.A.
        • Charini W.A.
        • Kuroda M.J.
        • et al.
        Simian immunodeficiency virus (SIV) gag DNA-vaccinated rhesus monkeys develop secondary cytotoxic T-lymphocyte responses and control viral replication after pathogenic SIV infection.
        J Virol. 2000; 74: 7485-7495
        • Evans D.T.
        • O'Connor D.H.
        • Jing P.
        • et al.
        Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef.
        Nat Med. 1999; 5: 1270-1276
        • Evans T.G.
        • Kallas E.G.
        • Campbell M.
        • et al.
        Evaluation of canarypox-induced CD8(+) responses following immunization by measuring the effector population IFN gamma production.
        Immunol Lett. 2001; 77: 7-15
        • Haigwood N.L.
        • Pierce C.C.
        • Robertson M.N.
        • et al.
        Protection from pathogenic SIV challenge using multigenic DNA vaccines.
        Immunol Lett. 1999; 66: 183-188
        • Kumar A.
        • Lifson J.D.
        • Li Z.
        • et al.
        Sequential immunization of macaques with two differentially attenuated vaccines induced long-term virus-specific immune responses and conferred protection against AIDS caused by heterologous simian human immunodeficiency virus (SHIV(89.6)P).
        Virology. 2001; 279: 241-256
        • Leung N.J.
        • Aldovini A.
        • Young R.
        • et al.
        The kinetics of specific immune responses in rhesus monkeys inoculated with live recombinant BCG expressing SIV Gag, Pol, Env, and Nef proteins.
        Virology. 2000; 268: 94-103
        • Matano T.
        • Kano M.
        • Nakamura H.
        Rapid appearance of secondary immune responses and protection from acute CD4 depletion after a highly pathogenic immunodeficiency virus challenge in macaques vaccinated with a DNA prime/Sendai virus vector boost regimen.
        J Virol. 2001; 75: 11891-11896
        • Nehete P.N.
        • Chitta S.
        • Hossain M.M.
        • et al.
        Protection against chronic infection and AIDS by an HIV envelope peptide-cocktail vaccine in a pathogenic SHIV-rhesus model.
        Vaccine. 2001; 20: 813-825
        • Seth A.
        • Ourmanov I.
        • Kuroda M.J.
        • et al.
        Recombinant modified vaccinia virus Ankara-simian immunodeficiency virus gag pol elicits cytotoxic T lymphocytes in rhesus monkeys detected by a major histocompatibility complex class I/peptide tetramer.
        Proc Natl Acad Sci USA. 1998; 95: 10112-10116
        • The AIDS Vaccine Evaluation Group 022 Protocol Team
        Cellular and humoral immune responses to a canarypox vaccine containing human immunodeficiency virus type 1 Env, Gag, and Pro in combination with RGP120.
        J Infect Dis. 2001; 183: 563-570
        • Wagner R.
        • Teeuwsen V.J.
        • Deml L.
        • et al.
        Cytotoxic T cells and neutralizing antibodies induced in rhesus monkeys by virus-like particle HIV vaccines in the absence of protection from SHIV infection.
        Virology. 1998; 245: 65-74